ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2z GIF version

Theorem rebtwn2z 10211
Description: A real number can be bounded by integers above and below which are two apart.

The proof starts by finding two integers which are less than and greater than the given real number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on weak linearity, and iterating until the range consists of integers which are two apart. (Contributed by Jim Kingdon, 13-Oct-2021.)

Assertion
Ref Expression
rebtwn2z (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rebtwn2z
Dummy variables 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 btwnz 9331 . . 3 (𝐴 ∈ ℝ → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑛 ∈ ℤ 𝐴 < 𝑛))
2 reeanv 2639 . . 3 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑛) ↔ (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑛 ∈ ℤ 𝐴 < 𝑛))
31, 2sylibr 133 . 2 (𝐴 ∈ ℝ → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑛))
4 simpll 524 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 ∈ ℝ)
5 simplrl 530 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 ∈ ℤ)
65zred 9334 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 ∈ ℝ)
7 simplrr 531 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑛 ∈ ℤ)
87zred 9334 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑛 ∈ ℝ)
9 simprl 526 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 < 𝐴)
10 simprr 527 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 < 𝑛)
116, 4, 8, 9, 10lttrd 8045 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 < 𝑛)
12 znnsub 9263 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 < 𝑛 ↔ (𝑛𝑚) ∈ ℕ))
1312ad2antlr 486 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 < 𝑛 ↔ (𝑛𝑚) ∈ ℕ))
1411, 13mpbid 146 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑛𝑚) ∈ ℕ)
15 elnnuz 9523 . . . . . . . 8 ((𝑛𝑚) ∈ ℕ ↔ (𝑛𝑚) ∈ (ℤ‘1))
16 eluzp1p1 9512 . . . . . . . 8 ((𝑛𝑚) ∈ (ℤ‘1) → ((𝑛𝑚) + 1) ∈ (ℤ‘(1 + 1)))
1715, 16sylbi 120 . . . . . . 7 ((𝑛𝑚) ∈ ℕ → ((𝑛𝑚) + 1) ∈ (ℤ‘(1 + 1)))
18 df-2 8937 . . . . . . . 8 2 = (1 + 1)
1918fveq2i 5499 . . . . . . 7 (ℤ‘2) = (ℤ‘(1 + 1))
2017, 19eleqtrrdi 2264 . . . . . 6 ((𝑛𝑚) ∈ ℕ → ((𝑛𝑚) + 1) ∈ (ℤ‘2))
2114, 20syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ((𝑛𝑚) + 1) ∈ (ℤ‘2))
225zcnd 9335 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 ∈ ℂ)
237zcnd 9335 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑛 ∈ ℂ)
2422, 23pncan3d 8233 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + (𝑛𝑚)) = 𝑛)
2524, 8eqeltrd 2247 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + (𝑛𝑚)) ∈ ℝ)
268, 6resubcld 8300 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑛𝑚) ∈ ℝ)
27 1red 7935 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 1 ∈ ℝ)
2826, 27readdcld 7949 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ((𝑛𝑚) + 1) ∈ ℝ)
296, 28readdcld 7949 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + ((𝑛𝑚) + 1)) ∈ ℝ)
3010, 24breqtrrd 4017 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 < (𝑚 + (𝑛𝑚)))
3126ltp1d 8846 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑛𝑚) < ((𝑛𝑚) + 1))
3226, 28, 6, 31ltadd2dd 8341 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + (𝑛𝑚)) < (𝑚 + ((𝑛𝑚) + 1)))
334, 25, 29, 30, 32lttrd 8045 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 < (𝑚 + ((𝑛𝑚) + 1)))
34 breq1 3992 . . . . . . . 8 (𝑦 = 𝑚 → (𝑦 < 𝐴𝑚 < 𝐴))
35 oveq1 5860 . . . . . . . . 9 (𝑦 = 𝑚 → (𝑦 + ((𝑛𝑚) + 1)) = (𝑚 + ((𝑛𝑚) + 1)))
3635breq2d 4001 . . . . . . . 8 (𝑦 = 𝑚 → (𝐴 < (𝑦 + ((𝑛𝑚) + 1)) ↔ 𝐴 < (𝑚 + ((𝑛𝑚) + 1))))
3734, 36anbi12d 470 . . . . . . 7 (𝑦 = 𝑚 → ((𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1))) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + ((𝑛𝑚) + 1)))))
3837rspcev 2834 . . . . . 6 ((𝑚 ∈ ℤ ∧ (𝑚 < 𝐴𝐴 < (𝑚 + ((𝑛𝑚) + 1)))) → ∃𝑦 ∈ ℤ (𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1))))
395, 9, 33, 38syl12anc 1231 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ∃𝑦 ∈ ℤ (𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1))))
40 rebtwn2zlemshrink 10210 . . . . 5 ((𝐴 ∈ ℝ ∧ ((𝑛𝑚) + 1) ∈ (ℤ‘2) ∧ ∃𝑦 ∈ ℤ (𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
414, 21, 39, 40syl3anc 1233 . . . 4 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
4241ex 114 . . 3 ((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 < 𝐴𝐴 < 𝑛) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
4342rexlimdvva 2595 . 2 (𝐴 ∈ ℝ → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑛) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
443, 43mpd 13 1 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2141  wrex 2449   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773  1c1 7775   + caddc 7777   < clt 7954  cmin 8090  cn 8878  2c2 8929  cz 9212  cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488
This theorem is referenced by:  qbtwnre  10213
  Copyright terms: Public domain W3C validator