ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2z GIF version

Theorem rebtwn2z 10361
Description: A real number can be bounded by integers above and below which are two apart.

The proof starts by finding two integers which are less than and greater than the given real number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on weak linearity, and iterating until the range consists of integers which are two apart. (Contributed by Jim Kingdon, 13-Oct-2021.)

Assertion
Ref Expression
rebtwn2z (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rebtwn2z
Dummy variables 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 btwnz 9462 . . 3 (𝐴 ∈ ℝ → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑛 ∈ ℤ 𝐴 < 𝑛))
2 reeanv 2667 . . 3 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑛) ↔ (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑛 ∈ ℤ 𝐴 < 𝑛))
31, 2sylibr 134 . 2 (𝐴 ∈ ℝ → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑛))
4 simpll 527 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 ∈ ℝ)
5 simplrl 535 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 ∈ ℤ)
65zred 9465 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 ∈ ℝ)
7 simplrr 536 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑛 ∈ ℤ)
87zred 9465 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑛 ∈ ℝ)
9 simprl 529 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 < 𝐴)
10 simprr 531 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 < 𝑛)
116, 4, 8, 9, 10lttrd 8169 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 < 𝑛)
12 znnsub 9394 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 < 𝑛 ↔ (𝑛𝑚) ∈ ℕ))
1312ad2antlr 489 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 < 𝑛 ↔ (𝑛𝑚) ∈ ℕ))
1411, 13mpbid 147 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑛𝑚) ∈ ℕ)
15 elnnuz 9655 . . . . . . . 8 ((𝑛𝑚) ∈ ℕ ↔ (𝑛𝑚) ∈ (ℤ‘1))
16 eluzp1p1 9644 . . . . . . . 8 ((𝑛𝑚) ∈ (ℤ‘1) → ((𝑛𝑚) + 1) ∈ (ℤ‘(1 + 1)))
1715, 16sylbi 121 . . . . . . 7 ((𝑛𝑚) ∈ ℕ → ((𝑛𝑚) + 1) ∈ (ℤ‘(1 + 1)))
18 df-2 9066 . . . . . . . 8 2 = (1 + 1)
1918fveq2i 5564 . . . . . . 7 (ℤ‘2) = (ℤ‘(1 + 1))
2017, 19eleqtrrdi 2290 . . . . . 6 ((𝑛𝑚) ∈ ℕ → ((𝑛𝑚) + 1) ∈ (ℤ‘2))
2114, 20syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ((𝑛𝑚) + 1) ∈ (ℤ‘2))
225zcnd 9466 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 ∈ ℂ)
237zcnd 9466 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑛 ∈ ℂ)
2422, 23pncan3d 8357 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + (𝑛𝑚)) = 𝑛)
2524, 8eqeltrd 2273 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + (𝑛𝑚)) ∈ ℝ)
268, 6resubcld 8424 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑛𝑚) ∈ ℝ)
27 1red 8058 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 1 ∈ ℝ)
2826, 27readdcld 8073 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ((𝑛𝑚) + 1) ∈ ℝ)
296, 28readdcld 8073 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + ((𝑛𝑚) + 1)) ∈ ℝ)
3010, 24breqtrrd 4062 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 < (𝑚 + (𝑛𝑚)))
3126ltp1d 8974 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑛𝑚) < ((𝑛𝑚) + 1))
3226, 28, 6, 31ltadd2dd 8466 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + (𝑛𝑚)) < (𝑚 + ((𝑛𝑚) + 1)))
334, 25, 29, 30, 32lttrd 8169 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 < (𝑚 + ((𝑛𝑚) + 1)))
34 breq1 4037 . . . . . . . 8 (𝑦 = 𝑚 → (𝑦 < 𝐴𝑚 < 𝐴))
35 oveq1 5932 . . . . . . . . 9 (𝑦 = 𝑚 → (𝑦 + ((𝑛𝑚) + 1)) = (𝑚 + ((𝑛𝑚) + 1)))
3635breq2d 4046 . . . . . . . 8 (𝑦 = 𝑚 → (𝐴 < (𝑦 + ((𝑛𝑚) + 1)) ↔ 𝐴 < (𝑚 + ((𝑛𝑚) + 1))))
3734, 36anbi12d 473 . . . . . . 7 (𝑦 = 𝑚 → ((𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1))) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + ((𝑛𝑚) + 1)))))
3837rspcev 2868 . . . . . 6 ((𝑚 ∈ ℤ ∧ (𝑚 < 𝐴𝐴 < (𝑚 + ((𝑛𝑚) + 1)))) → ∃𝑦 ∈ ℤ (𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1))))
395, 9, 33, 38syl12anc 1247 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ∃𝑦 ∈ ℤ (𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1))))
40 rebtwn2zlemshrink 10360 . . . . 5 ((𝐴 ∈ ℝ ∧ ((𝑛𝑚) + 1) ∈ (ℤ‘2) ∧ ∃𝑦 ∈ ℤ (𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
414, 21, 39, 40syl3anc 1249 . . . 4 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
4241ex 115 . . 3 ((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 < 𝐴𝐴 < 𝑛) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
4342rexlimdvva 2622 . 2 (𝐴 ∈ ℝ → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑛) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
443, 43mpd 13 1 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167  wrex 2476   class class class wbr 4034  cfv 5259  (class class class)co 5925  cr 7895  1c1 7897   + caddc 7899   < clt 8078  cmin 8214  cn 9007  2c2 9058  cz 9343  cuz 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619
This theorem is referenced by:  qbtwnre  10363
  Copyright terms: Public domain W3C validator