ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2z GIF version

Theorem rebtwn2z 10397
Description: A real number can be bounded by integers above and below which are two apart.

The proof starts by finding two integers which are less than and greater than the given real number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on weak linearity, and iterating until the range consists of integers which are two apart. (Contributed by Jim Kingdon, 13-Oct-2021.)

Assertion
Ref Expression
rebtwn2z (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rebtwn2z
Dummy variables 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 btwnz 9492 . . 3 (𝐴 ∈ ℝ → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑛 ∈ ℤ 𝐴 < 𝑛))
2 reeanv 2676 . . 3 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑛) ↔ (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑛 ∈ ℤ 𝐴 < 𝑛))
31, 2sylibr 134 . 2 (𝐴 ∈ ℝ → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑛))
4 simpll 527 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 ∈ ℝ)
5 simplrl 535 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 ∈ ℤ)
65zred 9495 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 ∈ ℝ)
7 simplrr 536 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑛 ∈ ℤ)
87zred 9495 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑛 ∈ ℝ)
9 simprl 529 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 < 𝐴)
10 simprr 531 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 < 𝑛)
116, 4, 8, 9, 10lttrd 8198 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 < 𝑛)
12 znnsub 9424 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 < 𝑛 ↔ (𝑛𝑚) ∈ ℕ))
1312ad2antlr 489 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 < 𝑛 ↔ (𝑛𝑚) ∈ ℕ))
1411, 13mpbid 147 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑛𝑚) ∈ ℕ)
15 elnnuz 9685 . . . . . . . 8 ((𝑛𝑚) ∈ ℕ ↔ (𝑛𝑚) ∈ (ℤ‘1))
16 eluzp1p1 9674 . . . . . . . 8 ((𝑛𝑚) ∈ (ℤ‘1) → ((𝑛𝑚) + 1) ∈ (ℤ‘(1 + 1)))
1715, 16sylbi 121 . . . . . . 7 ((𝑛𝑚) ∈ ℕ → ((𝑛𝑚) + 1) ∈ (ℤ‘(1 + 1)))
18 df-2 9095 . . . . . . . 8 2 = (1 + 1)
1918fveq2i 5579 . . . . . . 7 (ℤ‘2) = (ℤ‘(1 + 1))
2017, 19eleqtrrdi 2299 . . . . . 6 ((𝑛𝑚) ∈ ℕ → ((𝑛𝑚) + 1) ∈ (ℤ‘2))
2114, 20syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ((𝑛𝑚) + 1) ∈ (ℤ‘2))
225zcnd 9496 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 ∈ ℂ)
237zcnd 9496 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑛 ∈ ℂ)
2422, 23pncan3d 8386 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + (𝑛𝑚)) = 𝑛)
2524, 8eqeltrd 2282 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + (𝑛𝑚)) ∈ ℝ)
268, 6resubcld 8453 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑛𝑚) ∈ ℝ)
27 1red 8087 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 1 ∈ ℝ)
2826, 27readdcld 8102 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ((𝑛𝑚) + 1) ∈ ℝ)
296, 28readdcld 8102 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + ((𝑛𝑚) + 1)) ∈ ℝ)
3010, 24breqtrrd 4072 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 < (𝑚 + (𝑛𝑚)))
3126ltp1d 9003 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑛𝑚) < ((𝑛𝑚) + 1))
3226, 28, 6, 31ltadd2dd 8495 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + (𝑛𝑚)) < (𝑚 + ((𝑛𝑚) + 1)))
334, 25, 29, 30, 32lttrd 8198 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 < (𝑚 + ((𝑛𝑚) + 1)))
34 breq1 4047 . . . . . . . 8 (𝑦 = 𝑚 → (𝑦 < 𝐴𝑚 < 𝐴))
35 oveq1 5951 . . . . . . . . 9 (𝑦 = 𝑚 → (𝑦 + ((𝑛𝑚) + 1)) = (𝑚 + ((𝑛𝑚) + 1)))
3635breq2d 4056 . . . . . . . 8 (𝑦 = 𝑚 → (𝐴 < (𝑦 + ((𝑛𝑚) + 1)) ↔ 𝐴 < (𝑚 + ((𝑛𝑚) + 1))))
3734, 36anbi12d 473 . . . . . . 7 (𝑦 = 𝑚 → ((𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1))) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + ((𝑛𝑚) + 1)))))
3837rspcev 2877 . . . . . 6 ((𝑚 ∈ ℤ ∧ (𝑚 < 𝐴𝐴 < (𝑚 + ((𝑛𝑚) + 1)))) → ∃𝑦 ∈ ℤ (𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1))))
395, 9, 33, 38syl12anc 1248 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ∃𝑦 ∈ ℤ (𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1))))
40 rebtwn2zlemshrink 10396 . . . . 5 ((𝐴 ∈ ℝ ∧ ((𝑛𝑚) + 1) ∈ (ℤ‘2) ∧ ∃𝑦 ∈ ℤ (𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
414, 21, 39, 40syl3anc 1250 . . . 4 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
4241ex 115 . . 3 ((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 < 𝐴𝐴 < 𝑛) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
4342rexlimdvva 2631 . 2 (𝐴 ∈ ℝ → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑛) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
443, 43mpd 13 1 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2176  wrex 2485   class class class wbr 4044  cfv 5271  (class class class)co 5944  cr 7924  1c1 7926   + caddc 7928   < clt 8107  cmin 8243  cn 9036  2c2 9087  cz 9372  cuz 9648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649
This theorem is referenced by:  qbtwnre  10399
  Copyright terms: Public domain W3C validator