ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2z GIF version

Theorem rebtwn2z 10255
Description: A real number can be bounded by integers above and below which are two apart.

The proof starts by finding two integers which are less than and greater than the given real number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on weak linearity, and iterating until the range consists of integers which are two apart. (Contributed by Jim Kingdon, 13-Oct-2021.)

Assertion
Ref Expression
rebtwn2z (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rebtwn2z
Dummy variables 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 btwnz 9372 . . 3 (𝐴 ∈ ℝ → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑛 ∈ ℤ 𝐴 < 𝑛))
2 reeanv 2647 . . 3 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑛) ↔ (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑛 ∈ ℤ 𝐴 < 𝑛))
31, 2sylibr 134 . 2 (𝐴 ∈ ℝ → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑛))
4 simpll 527 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 ∈ ℝ)
5 simplrl 535 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 ∈ ℤ)
65zred 9375 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 ∈ ℝ)
7 simplrr 536 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑛 ∈ ℤ)
87zred 9375 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑛 ∈ ℝ)
9 simprl 529 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 < 𝐴)
10 simprr 531 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 < 𝑛)
116, 4, 8, 9, 10lttrd 8083 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 < 𝑛)
12 znnsub 9304 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 < 𝑛 ↔ (𝑛𝑚) ∈ ℕ))
1312ad2antlr 489 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 < 𝑛 ↔ (𝑛𝑚) ∈ ℕ))
1411, 13mpbid 147 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑛𝑚) ∈ ℕ)
15 elnnuz 9564 . . . . . . . 8 ((𝑛𝑚) ∈ ℕ ↔ (𝑛𝑚) ∈ (ℤ‘1))
16 eluzp1p1 9553 . . . . . . . 8 ((𝑛𝑚) ∈ (ℤ‘1) → ((𝑛𝑚) + 1) ∈ (ℤ‘(1 + 1)))
1715, 16sylbi 121 . . . . . . 7 ((𝑛𝑚) ∈ ℕ → ((𝑛𝑚) + 1) ∈ (ℤ‘(1 + 1)))
18 df-2 8978 . . . . . . . 8 2 = (1 + 1)
1918fveq2i 5519 . . . . . . 7 (ℤ‘2) = (ℤ‘(1 + 1))
2017, 19eleqtrrdi 2271 . . . . . 6 ((𝑛𝑚) ∈ ℕ → ((𝑛𝑚) + 1) ∈ (ℤ‘2))
2114, 20syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ((𝑛𝑚) + 1) ∈ (ℤ‘2))
225zcnd 9376 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑚 ∈ ℂ)
237zcnd 9376 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝑛 ∈ ℂ)
2422, 23pncan3d 8271 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + (𝑛𝑚)) = 𝑛)
2524, 8eqeltrd 2254 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + (𝑛𝑚)) ∈ ℝ)
268, 6resubcld 8338 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑛𝑚) ∈ ℝ)
27 1red 7972 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 1 ∈ ℝ)
2826, 27readdcld 7987 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ((𝑛𝑚) + 1) ∈ ℝ)
296, 28readdcld 7987 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + ((𝑛𝑚) + 1)) ∈ ℝ)
3010, 24breqtrrd 4032 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 < (𝑚 + (𝑛𝑚)))
3126ltp1d 8887 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑛𝑚) < ((𝑛𝑚) + 1))
3226, 28, 6, 31ltadd2dd 8379 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → (𝑚 + (𝑛𝑚)) < (𝑚 + ((𝑛𝑚) + 1)))
334, 25, 29, 30, 32lttrd 8083 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → 𝐴 < (𝑚 + ((𝑛𝑚) + 1)))
34 breq1 4007 . . . . . . . 8 (𝑦 = 𝑚 → (𝑦 < 𝐴𝑚 < 𝐴))
35 oveq1 5882 . . . . . . . . 9 (𝑦 = 𝑚 → (𝑦 + ((𝑛𝑚) + 1)) = (𝑚 + ((𝑛𝑚) + 1)))
3635breq2d 4016 . . . . . . . 8 (𝑦 = 𝑚 → (𝐴 < (𝑦 + ((𝑛𝑚) + 1)) ↔ 𝐴 < (𝑚 + ((𝑛𝑚) + 1))))
3734, 36anbi12d 473 . . . . . . 7 (𝑦 = 𝑚 → ((𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1))) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + ((𝑛𝑚) + 1)))))
3837rspcev 2842 . . . . . 6 ((𝑚 ∈ ℤ ∧ (𝑚 < 𝐴𝐴 < (𝑚 + ((𝑛𝑚) + 1)))) → ∃𝑦 ∈ ℤ (𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1))))
395, 9, 33, 38syl12anc 1236 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ∃𝑦 ∈ ℤ (𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1))))
40 rebtwn2zlemshrink 10254 . . . . 5 ((𝐴 ∈ ℝ ∧ ((𝑛𝑚) + 1) ∈ (ℤ‘2) ∧ ∃𝑦 ∈ ℤ (𝑦 < 𝐴𝐴 < (𝑦 + ((𝑛𝑚) + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
414, 21, 39, 40syl3anc 1238 . . . 4 (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑛)) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
4241ex 115 . . 3 ((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 < 𝐴𝐴 < 𝑛) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
4342rexlimdvva 2602 . 2 (𝐴 ∈ ℝ → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑛) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
443, 43mpd 13 1 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2148  wrex 2456   class class class wbr 4004  cfv 5217  (class class class)co 5875  cr 7810  1c1 7812   + caddc 7814   < clt 7992  cmin 8128  cn 8919  2c2 8970  cz 9253  cuz 9528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927  ax-arch 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-2 8978  df-n0 9177  df-z 9254  df-uz 9529
This theorem is referenced by:  qbtwnre  10257
  Copyright terms: Public domain W3C validator