ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemex GIF version

Theorem exbtwnzlemex 10175
Description: Existence of an integer so that a given real number is between the integer and its successor. The real number must satisfy the 𝑛𝐴𝐴 < 𝑛 hypothesis. For example either a rational number or a number which is irrational (in the sense of being apart from any rational number) will meet this condition.

The proof starts by finding two integers which are less than and greater than 𝐴. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on the 𝑛𝐴𝐴 < 𝑛 hypothesis, and iterating until the range consists of two consecutive integers. (Contributed by Jim Kingdon, 8-Oct-2021.)

Hypotheses
Ref Expression
exbtwnzlemex.a (𝜑𝐴 ∈ ℝ)
exbtwnzlemex.tri ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
Assertion
Ref Expression
exbtwnzlemex (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable groups:   𝐴,𝑛   𝑥,𝐴   𝜑,𝑛
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exbtwnzlemex
Dummy variables 𝑎 𝑗 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exbtwnzlemex.a . . . 4 (𝜑𝐴 ∈ ℝ)
2 btwnz 9301 . . . 4 (𝐴 ∈ ℝ → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗))
31, 2syl 14 . . 3 (𝜑 → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗))
4 reeanv 2633 . . 3 (∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑗) ↔ (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗))
53, 4sylibr 133 . 2 (𝜑 → ∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑗))
6 simplrl 525 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 ∈ ℤ)
76zred 9304 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 ∈ ℝ)
81ad2antrr 480 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝐴 ∈ ℝ)
9 simprl 521 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 < 𝐴)
107, 8, 9ltled 8008 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚𝐴)
11 simprr 522 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝐴 < 𝑗)
126zcnd 9305 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 ∈ ℂ)
13 simplrr 526 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑗 ∈ ℤ)
1413zcnd 9305 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑗 ∈ ℂ)
1512, 14pncan3d 8203 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → (𝑚 + (𝑗𝑚)) = 𝑗)
1611, 15breqtrrd 4004 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝐴 < (𝑚 + (𝑗𝑚)))
17 breq1 3979 . . . . . . . 8 (𝑦 = 𝑚 → (𝑦𝐴𝑚𝐴))
18 oveq1 5843 . . . . . . . . 9 (𝑦 = 𝑚 → (𝑦 + (𝑗𝑚)) = (𝑚 + (𝑗𝑚)))
1918breq2d 3988 . . . . . . . 8 (𝑦 = 𝑚 → (𝐴 < (𝑦 + (𝑗𝑚)) ↔ 𝐴 < (𝑚 + (𝑗𝑚))))
2017, 19anbi12d 465 . . . . . . 7 (𝑦 = 𝑚 → ((𝑦𝐴𝐴 < (𝑦 + (𝑗𝑚))) ↔ (𝑚𝐴𝐴 < (𝑚 + (𝑗𝑚)))))
2120rspcev 2825 . . . . . 6 ((𝑚 ∈ ℤ ∧ (𝑚𝐴𝐴 < (𝑚 + (𝑗𝑚)))) → ∃𝑦 ∈ ℤ (𝑦𝐴𝐴 < (𝑦 + (𝑗𝑚))))
226, 10, 16, 21syl12anc 1225 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → ∃𝑦 ∈ ℤ (𝑦𝐴𝐴 < (𝑦 + (𝑗𝑚))))
2313zred 9304 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑗 ∈ ℝ)
247, 8, 23, 9, 11lttrd 8015 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 < 𝑗)
25 znnsub 9233 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑚 < 𝑗 ↔ (𝑗𝑚) ∈ ℕ))
2625ad2antlr 481 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → (𝑚 < 𝑗 ↔ (𝑗𝑚) ∈ ℕ))
2724, 26mpbid 146 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → (𝑗𝑚) ∈ ℕ)
28 exbtwnzlemex.tri . . . . . . . . . 10 ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
2928ralrimiva 2537 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℤ (𝑛𝐴𝐴 < 𝑛))
30 breq1 3979 . . . . . . . . . . 11 (𝑛 = 𝑎 → (𝑛𝐴𝑎𝐴))
31 breq2 3980 . . . . . . . . . . 11 (𝑛 = 𝑎 → (𝐴 < 𝑛𝐴 < 𝑎))
3230, 31orbi12d 783 . . . . . . . . . 10 (𝑛 = 𝑎 → ((𝑛𝐴𝐴 < 𝑛) ↔ (𝑎𝐴𝐴 < 𝑎)))
3332cbvralv 2689 . . . . . . . . 9 (∀𝑛 ∈ ℤ (𝑛𝐴𝐴 < 𝑛) ↔ ∀𝑎 ∈ ℤ (𝑎𝐴𝐴 < 𝑎))
3429, 33sylib 121 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ ℤ (𝑎𝐴𝐴 < 𝑎))
3534ad2antrr 480 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → ∀𝑎 ∈ ℤ (𝑎𝐴𝐴 < 𝑎))
3635r19.21bi 2552 . . . . . 6 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐴 < 𝑎))
3727, 8, 36exbtwnzlemshrink 10174 . . . . 5 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) ∧ ∃𝑦 ∈ ℤ (𝑦𝐴𝐴 < (𝑦 + (𝑗𝑚)))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3822, 37mpdan 418 . . . 4 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3938ex 114 . . 3 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑚 < 𝐴𝐴 < 𝑗) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4039rexlimdvva 2589 . 2 (𝜑 → (∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑗) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
415, 40mpd 13 1 (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wcel 2135  wral 2442  wrex 2443   class class class wbr 3976  (class class class)co 5836  cr 7743  1c1 7745   + caddc 7747   < clt 7924  cle 7925  cmin 8060  cn 8848  cz 9182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860  ax-arch 7863
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183
This theorem is referenced by:  qbtwnz  10177  apbtwnz  10199
  Copyright terms: Public domain W3C validator