| Step | Hyp | Ref
| Expression |
| 1 | | exbtwnzlemex.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | | btwnz 9462 |
. . . 4
⊢ (𝐴 ∈ ℝ →
(∃𝑚 ∈ ℤ
𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗)) |
| 3 | 1, 2 | syl 14 |
. . 3
⊢ (𝜑 → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗)) |
| 4 | | reeanv 2667 |
. . 3
⊢
(∃𝑚 ∈
ℤ ∃𝑗 ∈
ℤ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗) ↔ (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗)) |
| 5 | 3, 4 | sylibr 134 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) |
| 6 | | simplrl 535 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 ∈ ℤ) |
| 7 | 6 | zred 9465 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 ∈ ℝ) |
| 8 | 1 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝐴 ∈ ℝ) |
| 9 | | simprl 529 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 < 𝐴) |
| 10 | 7, 8, 9 | ltled 8162 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 ≤ 𝐴) |
| 11 | | simprr 531 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝐴 < 𝑗) |
| 12 | 6 | zcnd 9466 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 ∈ ℂ) |
| 13 | | simplrr 536 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑗 ∈ ℤ) |
| 14 | 13 | zcnd 9466 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑗 ∈ ℂ) |
| 15 | 12, 14 | pncan3d 8357 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → (𝑚 + (𝑗 − 𝑚)) = 𝑗) |
| 16 | 11, 15 | breqtrrd 4062 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝐴 < (𝑚 + (𝑗 − 𝑚))) |
| 17 | | breq1 4037 |
. . . . . . . 8
⊢ (𝑦 = 𝑚 → (𝑦 ≤ 𝐴 ↔ 𝑚 ≤ 𝐴)) |
| 18 | | oveq1 5932 |
. . . . . . . . 9
⊢ (𝑦 = 𝑚 → (𝑦 + (𝑗 − 𝑚)) = (𝑚 + (𝑗 − 𝑚))) |
| 19 | 18 | breq2d 4046 |
. . . . . . . 8
⊢ (𝑦 = 𝑚 → (𝐴 < (𝑦 + (𝑗 − 𝑚)) ↔ 𝐴 < (𝑚 + (𝑗 − 𝑚)))) |
| 20 | 17, 19 | anbi12d 473 |
. . . . . . 7
⊢ (𝑦 = 𝑚 → ((𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + (𝑗 − 𝑚))) ↔ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑗 − 𝑚))))) |
| 21 | 20 | rspcev 2868 |
. . . . . 6
⊢ ((𝑚 ∈ ℤ ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑗 − 𝑚)))) → ∃𝑦 ∈ ℤ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + (𝑗 − 𝑚)))) |
| 22 | 6, 10, 16, 21 | syl12anc 1247 |
. . . . 5
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → ∃𝑦 ∈ ℤ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + (𝑗 − 𝑚)))) |
| 23 | 13 | zred 9465 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑗 ∈ ℝ) |
| 24 | 7, 8, 23, 9, 11 | lttrd 8169 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 < 𝑗) |
| 25 | | znnsub 9394 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑚 < 𝑗 ↔ (𝑗 − 𝑚) ∈ ℕ)) |
| 26 | 25 | ad2antlr 489 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → (𝑚 < 𝑗 ↔ (𝑗 − 𝑚) ∈ ℕ)) |
| 27 | 24, 26 | mpbid 147 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → (𝑗 − 𝑚) ∈ ℕ) |
| 28 | | exbtwnzlemex.tri |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) |
| 29 | 28 | ralrimiva 2570 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ℤ (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) |
| 30 | | breq1 4037 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑎 → (𝑛 ≤ 𝐴 ↔ 𝑎 ≤ 𝐴)) |
| 31 | | breq2 4038 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑎 → (𝐴 < 𝑛 ↔ 𝐴 < 𝑎)) |
| 32 | 30, 31 | orbi12d 794 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑎 → ((𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛) ↔ (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎))) |
| 33 | 32 | cbvralv 2729 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ℤ (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛) ↔ ∀𝑎 ∈ ℤ (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎)) |
| 34 | 29, 33 | sylib 122 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑎 ∈ ℤ (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎)) |
| 35 | 34 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → ∀𝑎 ∈ ℤ (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎)) |
| 36 | 35 | r19.21bi 2585 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) ∧ 𝑎 ∈ ℤ) → (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎)) |
| 37 | 27, 8, 36 | exbtwnzlemshrink 10355 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) ∧ ∃𝑦 ∈ ℤ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + (𝑗 − 𝑚)))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
| 38 | 22, 37 | mpdan 421 |
. . . 4
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
| 39 | 38 | ex 115 |
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑚 < 𝐴 ∧ 𝐴 < 𝑗) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
| 40 | 39 | rexlimdvva 2622 |
. 2
⊢ (𝜑 → (∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
| 41 | 5, 40 | mpd 13 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |