| Step | Hyp | Ref
 | Expression | 
| 1 |   | exbtwnzlemex.a | 
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 2 |   | btwnz 9445 | 
. . . 4
⊢ (𝐴 ∈ ℝ →
(∃𝑚 ∈ ℤ
𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗)) | 
| 3 | 1, 2 | syl 14 | 
. . 3
⊢ (𝜑 → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗)) | 
| 4 |   | reeanv 2667 | 
. . 3
⊢
(∃𝑚 ∈
ℤ ∃𝑗 ∈
ℤ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗) ↔ (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗)) | 
| 5 | 3, 4 | sylibr 134 | 
. 2
⊢ (𝜑 → ∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) | 
| 6 |   | simplrl 535 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 ∈ ℤ) | 
| 7 | 6 | zred 9448 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 ∈ ℝ) | 
| 8 | 1 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝐴 ∈ ℝ) | 
| 9 |   | simprl 529 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 < 𝐴) | 
| 10 | 7, 8, 9 | ltled 8145 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 ≤ 𝐴) | 
| 11 |   | simprr 531 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝐴 < 𝑗) | 
| 12 | 6 | zcnd 9449 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 ∈ ℂ) | 
| 13 |   | simplrr 536 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑗 ∈ ℤ) | 
| 14 | 13 | zcnd 9449 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑗 ∈ ℂ) | 
| 15 | 12, 14 | pncan3d 8340 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → (𝑚 + (𝑗 − 𝑚)) = 𝑗) | 
| 16 | 11, 15 | breqtrrd 4061 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝐴 < (𝑚 + (𝑗 − 𝑚))) | 
| 17 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑦 = 𝑚 → (𝑦 ≤ 𝐴 ↔ 𝑚 ≤ 𝐴)) | 
| 18 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ (𝑦 = 𝑚 → (𝑦 + (𝑗 − 𝑚)) = (𝑚 + (𝑗 − 𝑚))) | 
| 19 | 18 | breq2d 4045 | 
. . . . . . . 8
⊢ (𝑦 = 𝑚 → (𝐴 < (𝑦 + (𝑗 − 𝑚)) ↔ 𝐴 < (𝑚 + (𝑗 − 𝑚)))) | 
| 20 | 17, 19 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑦 = 𝑚 → ((𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + (𝑗 − 𝑚))) ↔ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑗 − 𝑚))))) | 
| 21 | 20 | rspcev 2868 | 
. . . . . 6
⊢ ((𝑚 ∈ ℤ ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑗 − 𝑚)))) → ∃𝑦 ∈ ℤ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + (𝑗 − 𝑚)))) | 
| 22 | 6, 10, 16, 21 | syl12anc 1247 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → ∃𝑦 ∈ ℤ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + (𝑗 − 𝑚)))) | 
| 23 | 13 | zred 9448 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑗 ∈ ℝ) | 
| 24 | 7, 8, 23, 9, 11 | lttrd 8152 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 < 𝑗) | 
| 25 |   | znnsub 9377 | 
. . . . . . . 8
⊢ ((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑚 < 𝑗 ↔ (𝑗 − 𝑚) ∈ ℕ)) | 
| 26 | 25 | ad2antlr 489 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → (𝑚 < 𝑗 ↔ (𝑗 − 𝑚) ∈ ℕ)) | 
| 27 | 24, 26 | mpbid 147 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → (𝑗 − 𝑚) ∈ ℕ) | 
| 28 |   | exbtwnzlemex.tri | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) | 
| 29 | 28 | ralrimiva 2570 | 
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ℤ (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) | 
| 30 |   | breq1 4036 | 
. . . . . . . . . . 11
⊢ (𝑛 = 𝑎 → (𝑛 ≤ 𝐴 ↔ 𝑎 ≤ 𝐴)) | 
| 31 |   | breq2 4037 | 
. . . . . . . . . . 11
⊢ (𝑛 = 𝑎 → (𝐴 < 𝑛 ↔ 𝐴 < 𝑎)) | 
| 32 | 30, 31 | orbi12d 794 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑎 → ((𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛) ↔ (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎))) | 
| 33 | 32 | cbvralv 2729 | 
. . . . . . . . 9
⊢
(∀𝑛 ∈
ℤ (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛) ↔ ∀𝑎 ∈ ℤ (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎)) | 
| 34 | 29, 33 | sylib 122 | 
. . . . . . . 8
⊢ (𝜑 → ∀𝑎 ∈ ℤ (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎)) | 
| 35 | 34 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → ∀𝑎 ∈ ℤ (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎)) | 
| 36 | 35 | r19.21bi 2585 | 
. . . . . 6
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) ∧ 𝑎 ∈ ℤ) → (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎)) | 
| 37 | 27, 8, 36 | exbtwnzlemshrink 10338 | 
. . . . 5
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) ∧ ∃𝑦 ∈ ℤ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + (𝑗 − 𝑚)))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | 
| 38 | 22, 37 | mpdan 421 | 
. . . 4
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | 
| 39 | 38 | ex 115 | 
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑚 < 𝐴 ∧ 𝐴 < 𝑗) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) | 
| 40 | 39 | rexlimdvva 2622 | 
. 2
⊢ (𝜑 → (∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) | 
| 41 | 5, 40 | mpd 13 | 
1
⊢ (𝜑 → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |