ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemex GIF version

Theorem exbtwnzlemex 9868
Description: Existence of an integer so that a given real number is between the integer and its successor. The real number must satisfy the 𝑛𝐴𝐴 < 𝑛 hypothesis. For example either a rational number or a number which is irrational (in the sense of being apart from any rational number) will meet this condition.

The proof starts by finding two integers which are less than and greater than 𝐴. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on the 𝑛𝐴𝐴 < 𝑛 hypothesis, and iterating until the range consists of two consecutive integers. (Contributed by Jim Kingdon, 8-Oct-2021.)

Hypotheses
Ref Expression
exbtwnzlemex.a (𝜑𝐴 ∈ ℝ)
exbtwnzlemex.tri ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
Assertion
Ref Expression
exbtwnzlemex (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable groups:   𝐴,𝑛   𝑥,𝐴   𝜑,𝑛
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exbtwnzlemex
Dummy variables 𝑎 𝑗 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exbtwnzlemex.a . . . 4 (𝜑𝐴 ∈ ℝ)
2 btwnz 9022 . . . 4 (𝐴 ∈ ℝ → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗))
31, 2syl 14 . . 3 (𝜑 → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗))
4 reeanv 2558 . . 3 (∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑗) ↔ (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗))
53, 4sylibr 133 . 2 (𝜑 → ∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑗))
6 simplrl 505 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 ∈ ℤ)
76zred 9025 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 ∈ ℝ)
81ad2antrr 475 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝐴 ∈ ℝ)
9 simprl 501 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 < 𝐴)
107, 8, 9ltled 7752 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚𝐴)
11 simprr 502 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝐴 < 𝑗)
126zcnd 9026 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 ∈ ℂ)
13 simplrr 506 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑗 ∈ ℤ)
1413zcnd 9026 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑗 ∈ ℂ)
1512, 14pncan3d 7947 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → (𝑚 + (𝑗𝑚)) = 𝑗)
1611, 15breqtrrd 3901 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝐴 < (𝑚 + (𝑗𝑚)))
17 breq1 3878 . . . . . . . 8 (𝑦 = 𝑚 → (𝑦𝐴𝑚𝐴))
18 oveq1 5713 . . . . . . . . 9 (𝑦 = 𝑚 → (𝑦 + (𝑗𝑚)) = (𝑚 + (𝑗𝑚)))
1918breq2d 3887 . . . . . . . 8 (𝑦 = 𝑚 → (𝐴 < (𝑦 + (𝑗𝑚)) ↔ 𝐴 < (𝑚 + (𝑗𝑚))))
2017, 19anbi12d 460 . . . . . . 7 (𝑦 = 𝑚 → ((𝑦𝐴𝐴 < (𝑦 + (𝑗𝑚))) ↔ (𝑚𝐴𝐴 < (𝑚 + (𝑗𝑚)))))
2120rspcev 2744 . . . . . 6 ((𝑚 ∈ ℤ ∧ (𝑚𝐴𝐴 < (𝑚 + (𝑗𝑚)))) → ∃𝑦 ∈ ℤ (𝑦𝐴𝐴 < (𝑦 + (𝑗𝑚))))
226, 10, 16, 21syl12anc 1182 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → ∃𝑦 ∈ ℤ (𝑦𝐴𝐴 < (𝑦 + (𝑗𝑚))))
2313zred 9025 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑗 ∈ ℝ)
247, 8, 23, 9, 11lttrd 7759 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 < 𝑗)
25 znnsub 8957 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑚 < 𝑗 ↔ (𝑗𝑚) ∈ ℕ))
2625ad2antlr 476 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → (𝑚 < 𝑗 ↔ (𝑗𝑚) ∈ ℕ))
2724, 26mpbid 146 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → (𝑗𝑚) ∈ ℕ)
28 exbtwnzlemex.tri . . . . . . . . . 10 ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
2928ralrimiva 2464 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℤ (𝑛𝐴𝐴 < 𝑛))
30 breq1 3878 . . . . . . . . . . 11 (𝑛 = 𝑎 → (𝑛𝐴𝑎𝐴))
31 breq2 3879 . . . . . . . . . . 11 (𝑛 = 𝑎 → (𝐴 < 𝑛𝐴 < 𝑎))
3230, 31orbi12d 748 . . . . . . . . . 10 (𝑛 = 𝑎 → ((𝑛𝐴𝐴 < 𝑛) ↔ (𝑎𝐴𝐴 < 𝑎)))
3332cbvralv 2612 . . . . . . . . 9 (∀𝑛 ∈ ℤ (𝑛𝐴𝐴 < 𝑛) ↔ ∀𝑎 ∈ ℤ (𝑎𝐴𝐴 < 𝑎))
3429, 33sylib 121 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ ℤ (𝑎𝐴𝐴 < 𝑎))
3534ad2antrr 475 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → ∀𝑎 ∈ ℤ (𝑎𝐴𝐴 < 𝑎))
3635r19.21bi 2479 . . . . . 6 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐴 < 𝑎))
3727, 8, 36exbtwnzlemshrink 9867 . . . . 5 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) ∧ ∃𝑦 ∈ ℤ (𝑦𝐴𝐴 < (𝑦 + (𝑗𝑚)))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3822, 37mpdan 415 . . . 4 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3938ex 114 . . 3 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑚 < 𝐴𝐴 < 𝑗) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4039rexlimdvva 2516 . 2 (𝜑 → (∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑗) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
415, 40mpd 13 1 (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 670  wcel 1448  wral 2375  wrex 2376   class class class wbr 3875  (class class class)co 5706  cr 7499  1c1 7501   + caddc 7503   < clt 7672  cle 7673  cmin 7804  cn 8578  cz 8906
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611  ax-arch 7614
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907
This theorem is referenced by:  qbtwnz  9870  apbtwnz  9888
  Copyright terms: Public domain W3C validator