ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemex GIF version

Theorem exbtwnzlemex 10185
Description: Existence of an integer so that a given real number is between the integer and its successor. The real number must satisfy the 𝑛𝐴𝐴 < 𝑛 hypothesis. For example either a rational number or a number which is irrational (in the sense of being apart from any rational number) will meet this condition.

The proof starts by finding two integers which are less than and greater than 𝐴. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on the 𝑛𝐴𝐴 < 𝑛 hypothesis, and iterating until the range consists of two consecutive integers. (Contributed by Jim Kingdon, 8-Oct-2021.)

Hypotheses
Ref Expression
exbtwnzlemex.a (𝜑𝐴 ∈ ℝ)
exbtwnzlemex.tri ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
Assertion
Ref Expression
exbtwnzlemex (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable groups:   𝐴,𝑛   𝑥,𝐴   𝜑,𝑛
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exbtwnzlemex
Dummy variables 𝑎 𝑗 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exbtwnzlemex.a . . . 4 (𝜑𝐴 ∈ ℝ)
2 btwnz 9310 . . . 4 (𝐴 ∈ ℝ → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗))
31, 2syl 14 . . 3 (𝜑 → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗))
4 reeanv 2635 . . 3 (∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑗) ↔ (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗))
53, 4sylibr 133 . 2 (𝜑 → ∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑗))
6 simplrl 525 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 ∈ ℤ)
76zred 9313 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 ∈ ℝ)
81ad2antrr 480 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝐴 ∈ ℝ)
9 simprl 521 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 < 𝐴)
107, 8, 9ltled 8017 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚𝐴)
11 simprr 522 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝐴 < 𝑗)
126zcnd 9314 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 ∈ ℂ)
13 simplrr 526 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑗 ∈ ℤ)
1413zcnd 9314 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑗 ∈ ℂ)
1512, 14pncan3d 8212 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → (𝑚 + (𝑗𝑚)) = 𝑗)
1611, 15breqtrrd 4010 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝐴 < (𝑚 + (𝑗𝑚)))
17 breq1 3985 . . . . . . . 8 (𝑦 = 𝑚 → (𝑦𝐴𝑚𝐴))
18 oveq1 5849 . . . . . . . . 9 (𝑦 = 𝑚 → (𝑦 + (𝑗𝑚)) = (𝑚 + (𝑗𝑚)))
1918breq2d 3994 . . . . . . . 8 (𝑦 = 𝑚 → (𝐴 < (𝑦 + (𝑗𝑚)) ↔ 𝐴 < (𝑚 + (𝑗𝑚))))
2017, 19anbi12d 465 . . . . . . 7 (𝑦 = 𝑚 → ((𝑦𝐴𝐴 < (𝑦 + (𝑗𝑚))) ↔ (𝑚𝐴𝐴 < (𝑚 + (𝑗𝑚)))))
2120rspcev 2830 . . . . . 6 ((𝑚 ∈ ℤ ∧ (𝑚𝐴𝐴 < (𝑚 + (𝑗𝑚)))) → ∃𝑦 ∈ ℤ (𝑦𝐴𝐴 < (𝑦 + (𝑗𝑚))))
226, 10, 16, 21syl12anc 1226 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → ∃𝑦 ∈ ℤ (𝑦𝐴𝐴 < (𝑦 + (𝑗𝑚))))
2313zred 9313 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑗 ∈ ℝ)
247, 8, 23, 9, 11lttrd 8024 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → 𝑚 < 𝑗)
25 znnsub 9242 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑚 < 𝑗 ↔ (𝑗𝑚) ∈ ℕ))
2625ad2antlr 481 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → (𝑚 < 𝑗 ↔ (𝑗𝑚) ∈ ℕ))
2724, 26mpbid 146 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → (𝑗𝑚) ∈ ℕ)
28 exbtwnzlemex.tri . . . . . . . . . 10 ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
2928ralrimiva 2539 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℤ (𝑛𝐴𝐴 < 𝑛))
30 breq1 3985 . . . . . . . . . . 11 (𝑛 = 𝑎 → (𝑛𝐴𝑎𝐴))
31 breq2 3986 . . . . . . . . . . 11 (𝑛 = 𝑎 → (𝐴 < 𝑛𝐴 < 𝑎))
3230, 31orbi12d 783 . . . . . . . . . 10 (𝑛 = 𝑎 → ((𝑛𝐴𝐴 < 𝑛) ↔ (𝑎𝐴𝐴 < 𝑎)))
3332cbvralv 2692 . . . . . . . . 9 (∀𝑛 ∈ ℤ (𝑛𝐴𝐴 < 𝑛) ↔ ∀𝑎 ∈ ℤ (𝑎𝐴𝐴 < 𝑎))
3429, 33sylib 121 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ ℤ (𝑎𝐴𝐴 < 𝑎))
3534ad2antrr 480 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → ∀𝑎 ∈ ℤ (𝑎𝐴𝐴 < 𝑎))
3635r19.21bi 2554 . . . . . 6 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐴 < 𝑎))
3727, 8, 36exbtwnzlemshrink 10184 . . . . 5 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) ∧ ∃𝑦 ∈ ℤ (𝑦𝐴𝐴 < (𝑦 + (𝑗𝑚)))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3822, 37mpdan 418 . . . 4 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴𝐴 < 𝑗)) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3938ex 114 . . 3 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑚 < 𝐴𝐴 < 𝑗) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
4039rexlimdvva 2591 . 2 (𝜑 → (∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴𝐴 < 𝑗) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
415, 40mpd 13 1 (𝜑 → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wcel 2136  wral 2444  wrex 2445   class class class wbr 3982  (class class class)co 5842  cr 7752  1c1 7754   + caddc 7756   < clt 7933  cle 7934  cmin 8069  cn 8857  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192
This theorem is referenced by:  qbtwnz  10187  apbtwnz  10209
  Copyright terms: Public domain W3C validator