Step | Hyp | Ref
| Expression |
1 | | exbtwnzlemex.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | btwnz 9310 |
. . . 4
⊢ (𝐴 ∈ ℝ →
(∃𝑚 ∈ ℤ
𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗)) |
3 | 1, 2 | syl 14 |
. . 3
⊢ (𝜑 → (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗)) |
4 | | reeanv 2635 |
. . 3
⊢
(∃𝑚 ∈
ℤ ∃𝑗 ∈
ℤ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗) ↔ (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑗 ∈ ℤ 𝐴 < 𝑗)) |
5 | 3, 4 | sylibr 133 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) |
6 | | simplrl 525 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 ∈ ℤ) |
7 | 6 | zred 9313 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 ∈ ℝ) |
8 | 1 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝐴 ∈ ℝ) |
9 | | simprl 521 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 < 𝐴) |
10 | 7, 8, 9 | ltled 8017 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 ≤ 𝐴) |
11 | | simprr 522 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝐴 < 𝑗) |
12 | 6 | zcnd 9314 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 ∈ ℂ) |
13 | | simplrr 526 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑗 ∈ ℤ) |
14 | 13 | zcnd 9314 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑗 ∈ ℂ) |
15 | 12, 14 | pncan3d 8212 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → (𝑚 + (𝑗 − 𝑚)) = 𝑗) |
16 | 11, 15 | breqtrrd 4010 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝐴 < (𝑚 + (𝑗 − 𝑚))) |
17 | | breq1 3985 |
. . . . . . . 8
⊢ (𝑦 = 𝑚 → (𝑦 ≤ 𝐴 ↔ 𝑚 ≤ 𝐴)) |
18 | | oveq1 5849 |
. . . . . . . . 9
⊢ (𝑦 = 𝑚 → (𝑦 + (𝑗 − 𝑚)) = (𝑚 + (𝑗 − 𝑚))) |
19 | 18 | breq2d 3994 |
. . . . . . . 8
⊢ (𝑦 = 𝑚 → (𝐴 < (𝑦 + (𝑗 − 𝑚)) ↔ 𝐴 < (𝑚 + (𝑗 − 𝑚)))) |
20 | 17, 19 | anbi12d 465 |
. . . . . . 7
⊢ (𝑦 = 𝑚 → ((𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + (𝑗 − 𝑚))) ↔ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑗 − 𝑚))))) |
21 | 20 | rspcev 2830 |
. . . . . 6
⊢ ((𝑚 ∈ ℤ ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑗 − 𝑚)))) → ∃𝑦 ∈ ℤ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + (𝑗 − 𝑚)))) |
22 | 6, 10, 16, 21 | syl12anc 1226 |
. . . . 5
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → ∃𝑦 ∈ ℤ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + (𝑗 − 𝑚)))) |
23 | 13 | zred 9313 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑗 ∈ ℝ) |
24 | 7, 8, 23, 9, 11 | lttrd 8024 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → 𝑚 < 𝑗) |
25 | | znnsub 9242 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑚 < 𝑗 ↔ (𝑗 − 𝑚) ∈ ℕ)) |
26 | 25 | ad2antlr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → (𝑚 < 𝑗 ↔ (𝑗 − 𝑚) ∈ ℕ)) |
27 | 24, 26 | mpbid 146 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → (𝑗 − 𝑚) ∈ ℕ) |
28 | | exbtwnzlemex.tri |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) |
29 | 28 | ralrimiva 2539 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ℤ (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) |
30 | | breq1 3985 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑎 → (𝑛 ≤ 𝐴 ↔ 𝑎 ≤ 𝐴)) |
31 | | breq2 3986 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑎 → (𝐴 < 𝑛 ↔ 𝐴 < 𝑎)) |
32 | 30, 31 | orbi12d 783 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑎 → ((𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛) ↔ (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎))) |
33 | 32 | cbvralv 2692 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ℤ (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛) ↔ ∀𝑎 ∈ ℤ (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎)) |
34 | 29, 33 | sylib 121 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑎 ∈ ℤ (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎)) |
35 | 34 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → ∀𝑎 ∈ ℤ (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎)) |
36 | 35 | r19.21bi 2554 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) ∧ 𝑎 ∈ ℤ) → (𝑎 ≤ 𝐴 ∨ 𝐴 < 𝑎)) |
37 | 27, 8, 36 | exbtwnzlemshrink 10184 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) ∧ ∃𝑦 ∈ ℤ (𝑦 ≤ 𝐴 ∧ 𝐴 < (𝑦 + (𝑗 − 𝑚)))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
38 | 22, 37 | mpdan 418 |
. . . 4
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗)) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
39 | 38 | ex 114 |
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((𝑚 < 𝐴 ∧ 𝐴 < 𝑗) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
40 | 39 | rexlimdvva 2591 |
. 2
⊢ (𝜑 → (∃𝑚 ∈ ℤ ∃𝑗 ∈ ℤ (𝑚 < 𝐴 ∧ 𝐴 < 𝑗) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
41 | 5, 40 | mpd 13 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |