ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnpcan GIF version

Theorem xnpcan 9872
Description: Extended real version of npcan 8166. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnpcan ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)

Proof of Theorem xnpcan
StepHypRef Expression
1 rexr 8003 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 xnegneg 9833 . . . . 5 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
31, 2syl 14 . . . 4 (𝐵 ∈ ℝ → -𝑒-𝑒𝐵 = 𝐵)
43adantl 277 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → -𝑒-𝑒𝐵 = 𝐵)
54oveq2d 5891 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒-𝑒𝐵) = ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵))
6 rexneg 9830 . . . 4 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
7 renegcl 8218 . . . 4 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
86, 7eqeltrd 2254 . . 3 (𝐵 ∈ ℝ → -𝑒𝐵 ∈ ℝ)
9 xpncan 9871 . . 3 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒-𝑒𝐵) = 𝐴)
108, 9sylan2 286 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒-𝑒𝐵) = 𝐴)
115, 10eqtr3d 2212 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  (class class class)co 5875  cr 7810  *cxr 7991  -cneg 8129  -𝑒cxne 9769   +𝑒 cxad 9770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pnf 7994  df-mnf 7995  df-xr 7996  df-sub 8130  df-neg 8131  df-xneg 9772  df-xadd 9773
This theorem is referenced by:  xsubge0  9881  xlesubadd  9883  xrmaxaddlem  11268  xblss2ps  13907  xblss2  13908
  Copyright terms: Public domain W3C validator