Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnpcan | GIF version |
Description: Extended real version of npcan 8140. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnpcan | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 7977 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
2 | xnegneg 9804 | . . . . 5 ⊢ (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝐵 ∈ ℝ → -𝑒-𝑒𝐵 = 𝐵) |
4 | 3 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → -𝑒-𝑒𝐵 = 𝐵) |
5 | 4 | oveq2d 5881 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒-𝑒𝐵) = ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵)) |
6 | rexneg 9801 | . . . 4 ⊢ (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵) | |
7 | renegcl 8192 | . . . 4 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
8 | 6, 7 | eqeltrd 2252 | . . 3 ⊢ (𝐵 ∈ ℝ → -𝑒𝐵 ∈ ℝ) |
9 | xpncan 9842 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒-𝑒𝐵) = 𝐴) | |
10 | 8, 9 | sylan2 286 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒-𝑒𝐵) = 𝐴) |
11 | 5, 10 | eqtr3d 2210 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 (class class class)co 5865 ℝcr 7785 ℝ*cxr 7965 -cneg 8103 -𝑒cxne 9740 +𝑒 cxad 9741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-pnf 7968 df-mnf 7969 df-xr 7970 df-sub 8104 df-neg 8105 df-xneg 9743 df-xadd 9744 |
This theorem is referenced by: xsubge0 9852 xlesubadd 9854 xrmaxaddlem 11236 xblss2ps 13475 xblss2 13476 |
Copyright terms: Public domain | W3C validator |