ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1isolemsplit GIF version

Theorem zfz1isolemsplit 11020
Description: Lemma for zfz1iso 11023. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.)
Hypotheses
Ref Expression
zfz1isolemsplit.xf (𝜑𝑋 ∈ Fin)
zfz1isolemsplit.mx (𝜑𝑀𝑋)
Assertion
Ref Expression
zfz1isolemsplit (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))

Proof of Theorem zfz1isolemsplit
StepHypRef Expression
1 1zzd 9434 . . 3 (𝜑 → 1 ∈ ℤ)
2 zfz1isolemsplit.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
3 zfz1isolemsplit.mx . . . . . 6 (𝜑𝑀𝑋)
4 diffisn 7016 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin)
52, 3, 4syl2anc 411 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin)
6 hashcl 10963 . . . . 5 ((𝑋 ∖ {𝑀}) ∈ Fin → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0)
75, 6syl 14 . . . 4 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0)
8 nn0uz 9718 . . . . 5 0 = (ℤ‘0)
9 1m1e0 9140 . . . . . 6 (1 − 1) = 0
109fveq2i 5602 . . . . 5 (ℤ‘(1 − 1)) = (ℤ‘0)
118, 10eqtr4i 2231 . . . 4 0 = (ℤ‘(1 − 1))
127, 11eleqtrdi 2300 . . 3 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ‘(1 − 1)))
13 fzsuc2 10236 . . 3 ((1 ∈ ℤ ∧ (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ‘(1 − 1))) → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}))
141, 12, 13syl2anc 411 . 2 (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}))
15 hashdifsn 11001 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
162, 3, 15syl2anc 411 . . . . 5 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
1716oveq1d 5982 . . . 4 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1))
18 hashcl 10963 . . . . . . 7 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
192, 18syl 14 . . . . . 6 (𝜑 → (♯‘𝑋) ∈ ℕ0)
2019nn0cnd 9385 . . . . 5 (𝜑 → (♯‘𝑋) ∈ ℂ)
21 1cnd 8123 . . . . 5 (𝜑 → 1 ∈ ℂ)
2220, 21npcand 8422 . . . 4 (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋))
2317, 22eqtrd 2240 . . 3 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋))
2423oveq2d 5983 . 2 (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = (1...(♯‘𝑋)))
2523sneqd 3656 . . 3 (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)})
2625uneq2d 3335 . 2 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
2714, 24, 263eqtr3d 2248 1 (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  cdif 3171  cun 3172  {csn 3643  cfv 5290  (class class class)co 5967  Fincfn 6850  0cc0 7960  1c1 7961   + caddc 7963  cmin 8278  0cn0 9330  cz 9407  cuz 9683  ...cfz 10165  chash 10957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-ihash 10958
This theorem is referenced by:  zfz1isolemiso  11021  zfz1isolem1  11022
  Copyright terms: Public domain W3C validator