| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zfz1isolemsplit | GIF version | ||
| Description: Lemma for zfz1iso 10984. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.) |
| Ref | Expression |
|---|---|
| zfz1isolemsplit.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| zfz1isolemsplit.mx | ⊢ (𝜑 → 𝑀 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| zfz1isolemsplit | ⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1zzd 9398 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 2 | zfz1isolemsplit.xf | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 3 | zfz1isolemsplit.mx | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑋) | |
| 4 | diffisn 6989 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin) | |
| 5 | 2, 3, 4 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin) |
| 6 | hashcl 10924 | . . . . 5 ⊢ ((𝑋 ∖ {𝑀}) ∈ Fin → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0) | |
| 7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0) |
| 8 | nn0uz 9682 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 9 | 1m1e0 9104 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 10 | 9 | fveq2i 5578 | . . . . 5 ⊢ (ℤ≥‘(1 − 1)) = (ℤ≥‘0) |
| 11 | 8, 10 | eqtr4i 2228 | . . . 4 ⊢ ℕ0 = (ℤ≥‘(1 − 1)) |
| 12 | 7, 11 | eleqtrdi 2297 | . . 3 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ≥‘(1 − 1))) |
| 13 | fzsuc2 10200 | . . 3 ⊢ ((1 ∈ ℤ ∧ (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ≥‘(1 − 1))) → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)})) | |
| 14 | 1, 12, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)})) |
| 15 | hashdifsn 10962 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1)) | |
| 16 | 2, 3, 15 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1)) |
| 17 | 16 | oveq1d 5958 | . . . 4 ⊢ (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1)) |
| 18 | hashcl 10924 | . . . . . . 7 ⊢ (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0) | |
| 19 | 2, 18 | syl 14 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑋) ∈ ℕ0) |
| 20 | 19 | nn0cnd 9349 | . . . . 5 ⊢ (𝜑 → (♯‘𝑋) ∈ ℂ) |
| 21 | 1cnd 8087 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 22 | 20, 21 | npcand 8386 | . . . 4 ⊢ (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋)) |
| 23 | 17, 22 | eqtrd 2237 | . . 3 ⊢ (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋)) |
| 24 | 23 | oveq2d 5959 | . 2 ⊢ (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = (1...(♯‘𝑋))) |
| 25 | 23 | sneqd 3645 | . . 3 ⊢ (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)}) |
| 26 | 25 | uneq2d 3326 | . 2 ⊢ (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
| 27 | 14, 24, 26 | 3eqtr3d 2245 | 1 ⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ∖ cdif 3162 ∪ cun 3163 {csn 3632 ‘cfv 5270 (class class class)co 5943 Fincfn 6826 0cc0 7924 1c1 7925 + caddc 7927 − cmin 8242 ℕ0cn0 9294 ℤcz 9371 ℤ≥cuz 9647 ...cfz 10129 ♯chash 10918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-ihash 10919 |
| This theorem is referenced by: zfz1isolemiso 10982 zfz1isolem1 10983 |
| Copyright terms: Public domain | W3C validator |