| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zfz1isolemsplit | GIF version | ||
| Description: Lemma for zfz1iso 11023. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.) |
| Ref | Expression |
|---|---|
| zfz1isolemsplit.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| zfz1isolemsplit.mx | ⊢ (𝜑 → 𝑀 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| zfz1isolemsplit | ⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1zzd 9434 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 2 | zfz1isolemsplit.xf | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 3 | zfz1isolemsplit.mx | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑋) | |
| 4 | diffisn 7016 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin) | |
| 5 | 2, 3, 4 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin) |
| 6 | hashcl 10963 | . . . . 5 ⊢ ((𝑋 ∖ {𝑀}) ∈ Fin → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0) | |
| 7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0) |
| 8 | nn0uz 9718 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 9 | 1m1e0 9140 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 10 | 9 | fveq2i 5602 | . . . . 5 ⊢ (ℤ≥‘(1 − 1)) = (ℤ≥‘0) |
| 11 | 8, 10 | eqtr4i 2231 | . . . 4 ⊢ ℕ0 = (ℤ≥‘(1 − 1)) |
| 12 | 7, 11 | eleqtrdi 2300 | . . 3 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ≥‘(1 − 1))) |
| 13 | fzsuc2 10236 | . . 3 ⊢ ((1 ∈ ℤ ∧ (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ≥‘(1 − 1))) → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)})) | |
| 14 | 1, 12, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)})) |
| 15 | hashdifsn 11001 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1)) | |
| 16 | 2, 3, 15 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1)) |
| 17 | 16 | oveq1d 5982 | . . . 4 ⊢ (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1)) |
| 18 | hashcl 10963 | . . . . . . 7 ⊢ (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0) | |
| 19 | 2, 18 | syl 14 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑋) ∈ ℕ0) |
| 20 | 19 | nn0cnd 9385 | . . . . 5 ⊢ (𝜑 → (♯‘𝑋) ∈ ℂ) |
| 21 | 1cnd 8123 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 22 | 20, 21 | npcand 8422 | . . . 4 ⊢ (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋)) |
| 23 | 17, 22 | eqtrd 2240 | . . 3 ⊢ (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋)) |
| 24 | 23 | oveq2d 5983 | . 2 ⊢ (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = (1...(♯‘𝑋))) |
| 25 | 23 | sneqd 3656 | . . 3 ⊢ (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)}) |
| 26 | 25 | uneq2d 3335 | . 2 ⊢ (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
| 27 | 14, 24, 26 | 3eqtr3d 2248 | 1 ⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ∖ cdif 3171 ∪ cun 3172 {csn 3643 ‘cfv 5290 (class class class)co 5967 Fincfn 6850 0cc0 7960 1c1 7961 + caddc 7963 − cmin 8278 ℕ0cn0 9330 ℤcz 9407 ℤ≥cuz 9683 ...cfz 10165 ♯chash 10957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-ihash 10958 |
| This theorem is referenced by: zfz1isolemiso 11021 zfz1isolem1 11022 |
| Copyright terms: Public domain | W3C validator |