ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1isolemsplit GIF version

Theorem zfz1isolemsplit 10853
Description: Lemma for zfz1iso 10856. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.)
Hypotheses
Ref Expression
zfz1isolemsplit.xf (𝜑𝑋 ∈ Fin)
zfz1isolemsplit.mx (𝜑𝑀𝑋)
Assertion
Ref Expression
zfz1isolemsplit (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))

Proof of Theorem zfz1isolemsplit
StepHypRef Expression
1 1zzd 9311 . . 3 (𝜑 → 1 ∈ ℤ)
2 zfz1isolemsplit.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
3 zfz1isolemsplit.mx . . . . . 6 (𝜑𝑀𝑋)
4 diffisn 6922 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin)
52, 3, 4syl2anc 411 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin)
6 hashcl 10796 . . . . 5 ((𝑋 ∖ {𝑀}) ∈ Fin → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0)
75, 6syl 14 . . . 4 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0)
8 nn0uz 9594 . . . . 5 0 = (ℤ‘0)
9 1m1e0 9019 . . . . . 6 (1 − 1) = 0
109fveq2i 5537 . . . . 5 (ℤ‘(1 − 1)) = (ℤ‘0)
118, 10eqtr4i 2213 . . . 4 0 = (ℤ‘(1 − 1))
127, 11eleqtrdi 2282 . . 3 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ‘(1 − 1)))
13 fzsuc2 10111 . . 3 ((1 ∈ ℤ ∧ (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ‘(1 − 1))) → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}))
141, 12, 13syl2anc 411 . 2 (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}))
15 hashdifsn 10834 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
162, 3, 15syl2anc 411 . . . . 5 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
1716oveq1d 5912 . . . 4 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1))
18 hashcl 10796 . . . . . . 7 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
192, 18syl 14 . . . . . 6 (𝜑 → (♯‘𝑋) ∈ ℕ0)
2019nn0cnd 9262 . . . . 5 (𝜑 → (♯‘𝑋) ∈ ℂ)
21 1cnd 8004 . . . . 5 (𝜑 → 1 ∈ ℂ)
2220, 21npcand 8303 . . . 4 (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋))
2317, 22eqtrd 2222 . . 3 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋))
2423oveq2d 5913 . 2 (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = (1...(♯‘𝑋)))
2523sneqd 3620 . . 3 (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)})
2625uneq2d 3304 . 2 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
2714, 24, 263eqtr3d 2230 1 (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  cdif 3141  cun 3142  {csn 3607  cfv 5235  (class class class)co 5897  Fincfn 6767  0cc0 7842  1c1 7843   + caddc 7845  cmin 8159  0cn0 9207  cz 9284  cuz 9559  ...cfz 10040  chash 10790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-n0 9208  df-z 9285  df-uz 9560  df-fz 10041  df-ihash 10791
This theorem is referenced by:  zfz1isolemiso  10854  zfz1isolem1  10855
  Copyright terms: Public domain W3C validator