![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zfz1isolemsplit | GIF version |
Description: Lemma for zfz1iso 10823. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.) |
Ref | Expression |
---|---|
zfz1isolemsplit.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
zfz1isolemsplit.mx | ⊢ (𝜑 → 𝑀 ∈ 𝑋) |
Ref | Expression |
---|---|
zfz1isolemsplit | ⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1zzd 9282 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
2 | zfz1isolemsplit.xf | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
3 | zfz1isolemsplit.mx | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑋) | |
4 | diffisn 6895 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin) | |
5 | 2, 3, 4 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin) |
6 | hashcl 10763 | . . . . 5 ⊢ ((𝑋 ∖ {𝑀}) ∈ Fin → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0) |
8 | nn0uz 9564 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
9 | 1m1e0 8990 | . . . . . 6 ⊢ (1 − 1) = 0 | |
10 | 9 | fveq2i 5520 | . . . . 5 ⊢ (ℤ≥‘(1 − 1)) = (ℤ≥‘0) |
11 | 8, 10 | eqtr4i 2201 | . . . 4 ⊢ ℕ0 = (ℤ≥‘(1 − 1)) |
12 | 7, 11 | eleqtrdi 2270 | . . 3 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ≥‘(1 − 1))) |
13 | fzsuc2 10081 | . . 3 ⊢ ((1 ∈ ℤ ∧ (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ≥‘(1 − 1))) → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)})) | |
14 | 1, 12, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)})) |
15 | hashdifsn 10801 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1)) | |
16 | 2, 3, 15 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1)) |
17 | 16 | oveq1d 5892 | . . . 4 ⊢ (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1)) |
18 | hashcl 10763 | . . . . . . 7 ⊢ (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0) | |
19 | 2, 18 | syl 14 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑋) ∈ ℕ0) |
20 | 19 | nn0cnd 9233 | . . . . 5 ⊢ (𝜑 → (♯‘𝑋) ∈ ℂ) |
21 | 1cnd 7975 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
22 | 20, 21 | npcand 8274 | . . . 4 ⊢ (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋)) |
23 | 17, 22 | eqtrd 2210 | . . 3 ⊢ (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋)) |
24 | 23 | oveq2d 5893 | . 2 ⊢ (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = (1...(♯‘𝑋))) |
25 | 23 | sneqd 3607 | . . 3 ⊢ (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)}) |
26 | 25 | uneq2d 3291 | . 2 ⊢ (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
27 | 14, 24, 26 | 3eqtr3d 2218 | 1 ⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ∖ cdif 3128 ∪ cun 3129 {csn 3594 ‘cfv 5218 (class class class)co 5877 Fincfn 6742 0cc0 7813 1c1 7814 + caddc 7816 − cmin 8130 ℕ0cn0 9178 ℤcz 9255 ℤ≥cuz 9530 ...cfz 10010 ♯chash 10757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-en 6743 df-dom 6744 df-fin 6745 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 df-ihash 10758 |
This theorem is referenced by: zfz1isolemiso 10821 zfz1isolem1 10822 |
Copyright terms: Public domain | W3C validator |