Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zfz1isolemsplit | GIF version |
Description: Lemma for zfz1iso 10776. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.) |
Ref | Expression |
---|---|
zfz1isolemsplit.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
zfz1isolemsplit.mx | ⊢ (𝜑 → 𝑀 ∈ 𝑋) |
Ref | Expression |
---|---|
zfz1isolemsplit | ⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1zzd 9239 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
2 | zfz1isolemsplit.xf | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
3 | zfz1isolemsplit.mx | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑋) | |
4 | diffisn 6871 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin) | |
5 | 2, 3, 4 | syl2anc 409 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin) |
6 | hashcl 10715 | . . . . 5 ⊢ ((𝑋 ∖ {𝑀}) ∈ Fin → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0) |
8 | nn0uz 9521 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
9 | 1m1e0 8947 | . . . . . 6 ⊢ (1 − 1) = 0 | |
10 | 9 | fveq2i 5499 | . . . . 5 ⊢ (ℤ≥‘(1 − 1)) = (ℤ≥‘0) |
11 | 8, 10 | eqtr4i 2194 | . . . 4 ⊢ ℕ0 = (ℤ≥‘(1 − 1)) |
12 | 7, 11 | eleqtrdi 2263 | . . 3 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ≥‘(1 − 1))) |
13 | fzsuc2 10035 | . . 3 ⊢ ((1 ∈ ℤ ∧ (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ≥‘(1 − 1))) → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)})) | |
14 | 1, 12, 13 | syl2anc 409 | . 2 ⊢ (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)})) |
15 | hashdifsn 10754 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1)) | |
16 | 2, 3, 15 | syl2anc 409 | . . . . 5 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1)) |
17 | 16 | oveq1d 5868 | . . . 4 ⊢ (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1)) |
18 | hashcl 10715 | . . . . . . 7 ⊢ (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0) | |
19 | 2, 18 | syl 14 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑋) ∈ ℕ0) |
20 | 19 | nn0cnd 9190 | . . . . 5 ⊢ (𝜑 → (♯‘𝑋) ∈ ℂ) |
21 | 1cnd 7936 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
22 | 20, 21 | npcand 8234 | . . . 4 ⊢ (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋)) |
23 | 17, 22 | eqtrd 2203 | . . 3 ⊢ (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋)) |
24 | 23 | oveq2d 5869 | . 2 ⊢ (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = (1...(♯‘𝑋))) |
25 | 23 | sneqd 3596 | . . 3 ⊢ (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)}) |
26 | 25 | uneq2d 3281 | . 2 ⊢ (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
27 | 14, 24, 26 | 3eqtr3d 2211 | 1 ⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ∖ cdif 3118 ∪ cun 3119 {csn 3583 ‘cfv 5198 (class class class)co 5853 Fincfn 6718 0cc0 7774 1c1 7775 + caddc 7777 − cmin 8090 ℕ0cn0 9135 ℤcz 9212 ℤ≥cuz 9487 ...cfz 9965 ♯chash 10709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-ihash 10710 |
This theorem is referenced by: zfz1isolemiso 10774 zfz1isolem1 10775 |
Copyright terms: Public domain | W3C validator |