![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zfz1isolemsplit | GIF version |
Description: Lemma for zfz1iso 10915. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.) |
Ref | Expression |
---|---|
zfz1isolemsplit.xf | ⊢ (𝜑 → 𝑋 ∈ Fin) |
zfz1isolemsplit.mx | ⊢ (𝜑 → 𝑀 ∈ 𝑋) |
Ref | Expression |
---|---|
zfz1isolemsplit | ⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1zzd 9347 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
2 | zfz1isolemsplit.xf | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
3 | zfz1isolemsplit.mx | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑋) | |
4 | diffisn 6951 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin) | |
5 | 2, 3, 4 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin) |
6 | hashcl 10855 | . . . . 5 ⊢ ((𝑋 ∖ {𝑀}) ∈ Fin → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0) |
8 | nn0uz 9630 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
9 | 1m1e0 9053 | . . . . . 6 ⊢ (1 − 1) = 0 | |
10 | 9 | fveq2i 5558 | . . . . 5 ⊢ (ℤ≥‘(1 − 1)) = (ℤ≥‘0) |
11 | 8, 10 | eqtr4i 2217 | . . . 4 ⊢ ℕ0 = (ℤ≥‘(1 − 1)) |
12 | 7, 11 | eleqtrdi 2286 | . . 3 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ≥‘(1 − 1))) |
13 | fzsuc2 10148 | . . 3 ⊢ ((1 ∈ ℤ ∧ (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ≥‘(1 − 1))) → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)})) | |
14 | 1, 12, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)})) |
15 | hashdifsn 10893 | . . . . . 6 ⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1)) | |
16 | 2, 3, 15 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1)) |
17 | 16 | oveq1d 5934 | . . . 4 ⊢ (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1)) |
18 | hashcl 10855 | . . . . . . 7 ⊢ (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0) | |
19 | 2, 18 | syl 14 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑋) ∈ ℕ0) |
20 | 19 | nn0cnd 9298 | . . . . 5 ⊢ (𝜑 → (♯‘𝑋) ∈ ℂ) |
21 | 1cnd 8037 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
22 | 20, 21 | npcand 8336 | . . . 4 ⊢ (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋)) |
23 | 17, 22 | eqtrd 2226 | . . 3 ⊢ (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋)) |
24 | 23 | oveq2d 5935 | . 2 ⊢ (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = (1...(♯‘𝑋))) |
25 | 23 | sneqd 3632 | . . 3 ⊢ (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)}) |
26 | 25 | uneq2d 3314 | . 2 ⊢ (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
27 | 14, 24, 26 | 3eqtr3d 2234 | 1 ⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∖ cdif 3151 ∪ cun 3152 {csn 3619 ‘cfv 5255 (class class class)co 5919 Fincfn 6796 0cc0 7874 1c1 7875 + caddc 7877 − cmin 8192 ℕ0cn0 9243 ℤcz 9320 ℤ≥cuz 9595 ...cfz 10077 ♯chash 10849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-ihash 10850 |
This theorem is referenced by: zfz1isolemiso 10913 zfz1isolem1 10914 |
Copyright terms: Public domain | W3C validator |