ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1isolemsplit GIF version

Theorem zfz1isolemsplit 10820
Description: Lemma for zfz1iso 10823. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.)
Hypotheses
Ref Expression
zfz1isolemsplit.xf (𝜑𝑋 ∈ Fin)
zfz1isolemsplit.mx (𝜑𝑀𝑋)
Assertion
Ref Expression
zfz1isolemsplit (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))

Proof of Theorem zfz1isolemsplit
StepHypRef Expression
1 1zzd 9282 . . 3 (𝜑 → 1 ∈ ℤ)
2 zfz1isolemsplit.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
3 zfz1isolemsplit.mx . . . . . 6 (𝜑𝑀𝑋)
4 diffisn 6895 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin)
52, 3, 4syl2anc 411 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin)
6 hashcl 10763 . . . . 5 ((𝑋 ∖ {𝑀}) ∈ Fin → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0)
75, 6syl 14 . . . 4 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ ℕ0)
8 nn0uz 9564 . . . . 5 0 = (ℤ‘0)
9 1m1e0 8990 . . . . . 6 (1 − 1) = 0
109fveq2i 5520 . . . . 5 (ℤ‘(1 − 1)) = (ℤ‘0)
118, 10eqtr4i 2201 . . . 4 0 = (ℤ‘(1 − 1))
127, 11eleqtrdi 2270 . . 3 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ‘(1 − 1)))
13 fzsuc2 10081 . . 3 ((1 ∈ ℤ ∧ (♯‘(𝑋 ∖ {𝑀})) ∈ (ℤ‘(1 − 1))) → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}))
141, 12, 13syl2anc 411 . 2 (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}))
15 hashdifsn 10801 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
162, 3, 15syl2anc 411 . . . . 5 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
1716oveq1d 5892 . . . 4 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1))
18 hashcl 10763 . . . . . . 7 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
192, 18syl 14 . . . . . 6 (𝜑 → (♯‘𝑋) ∈ ℕ0)
2019nn0cnd 9233 . . . . 5 (𝜑 → (♯‘𝑋) ∈ ℂ)
21 1cnd 7975 . . . . 5 (𝜑 → 1 ∈ ℂ)
2220, 21npcand 8274 . . . 4 (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋))
2317, 22eqtrd 2210 . . 3 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋))
2423oveq2d 5893 . 2 (𝜑 → (1...((♯‘(𝑋 ∖ {𝑀})) + 1)) = (1...(♯‘𝑋)))
2523sneqd 3607 . . 3 (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)})
2625uneq2d 3291 . 2 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
2714, 24, 263eqtr3d 2218 1 (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  cdif 3128  cun 3129  {csn 3594  cfv 5218  (class class class)co 5877  Fincfn 6742  0cc0 7813  1c1 7814   + caddc 7816  cmin 8130  0cn0 9178  cz 9255  cuz 9530  ...cfz 10010  chash 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-ihash 10758
This theorem is referenced by:  zfz1isolemiso  10821  zfz1isolem1  10822
  Copyright terms: Public domain W3C validator