ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngrng GIF version

Theorem subrngrng 13566
Description: A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
subrngrng.1 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subrngrng (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng)

Proof of Theorem subrngrng
StepHypRef Expression
1 simp2 1000 . 2 ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) → (𝑅s 𝐴) ∈ Rng)
2 eqid 2189 . . 3 (Base‘𝑅) = (Base‘𝑅)
32issubrng 13563 . 2 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)))
4 subrngrng.1 . . 3 𝑆 = (𝑅s 𝐴)
54eleq1i 2255 . 2 (𝑆 ∈ Rng ↔ (𝑅s 𝐴) ∈ Rng)
61, 3, 53imtr4i 201 1 (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2160  wss 3144  cfv 5235  (class class class)co 5897  Basecbs 12515  s cress 12516  Rngcrng 13303  SubRngcsubrng 13561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5900  df-inn 8951  df-ndx 12518  df-slot 12519  df-base 12521  df-subrng 13562
This theorem is referenced by:  subrngsubg  13568  subrngmcl  13573  subsubrng  13578
  Copyright terms: Public domain W3C validator