ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngrng GIF version

Theorem subrngrng 13701
Description: A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
subrngrng.1 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subrngrng (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng)

Proof of Theorem subrngrng
StepHypRef Expression
1 simp2 1000 . 2 ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) → (𝑅s 𝐴) ∈ Rng)
2 eqid 2193 . . 3 (Base‘𝑅) = (Base‘𝑅)
32issubrng 13698 . 2 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)))
4 subrngrng.1 . . 3 𝑆 = (𝑅s 𝐴)
54eleq1i 2259 . 2 (𝑆 ∈ Rng ↔ (𝑅s 𝐴) ∈ Rng)
61, 3, 53imtr4i 201 1 (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  wss 3154  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  Rngcrng 13431  SubRngcsubrng 13696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-subrng 13697
This theorem is referenced by:  subrngsubg  13703  subrngmcl  13708  subsubrng  13713
  Copyright terms: Public domain W3C validator