![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subrngrng | GIF version |
Description: A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.) |
Ref | Expression |
---|---|
subrngrng.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
subrngrng | ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1000 | . 2 ⊢ ((𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) → (𝑅 ↾s 𝐴) ∈ Rng) | |
2 | eqid 2189 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 2 | issubrng 13563 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅))) |
4 | subrngrng.1 | . . 3 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
5 | 4 | eleq1i 2255 | . 2 ⊢ (𝑆 ∈ Rng ↔ (𝑅 ↾s 𝐴) ∈ Rng) |
6 | 1, 3, 5 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ⊆ wss 3144 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 ↾s cress 12516 Rngcrng 13303 SubRngcsubrng 13561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7933 ax-resscn 7934 ax-1re 7936 ax-addrcl 7939 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 df-ov 5900 df-inn 8951 df-ndx 12518 df-slot 12519 df-base 12521 df-subrng 13562 |
This theorem is referenced by: subrngsubg 13568 subrngmcl 13573 subsubrng 13578 |
Copyright terms: Public domain | W3C validator |