| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrngrng | GIF version | ||
| Description: A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| subrngrng.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| Ref | Expression |
|---|---|
| subrngrng | ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1022 | . 2 ⊢ ((𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) → (𝑅 ↾s 𝐴) ∈ Rng) | |
| 2 | eqid 2229 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 2 | issubrng 14157 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅))) |
| 4 | subrngrng.1 | . . 3 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 5 | 4 | eleq1i 2295 | . 2 ⊢ (𝑆 ∈ Rng ↔ (𝑅 ↾s 𝐴) ∈ Rng) |
| 6 | 1, 3, 5 | 3imtr4i 201 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 ↾s cress 13028 Rngcrng 13890 SubRngcsubrng 14155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-ov 6003 df-inn 9107 df-ndx 13030 df-slot 13031 df-base 13033 df-subrng 14156 |
| This theorem is referenced by: subrngsubg 14162 subrngmcl 14167 subsubrng 14172 |
| Copyright terms: Public domain | W3C validator |