| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrngsubg | GIF version | ||
| Description: A subring is a subgroup. (Contributed by AV, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| subrngsubg | ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngrcl 14009 | . . 3 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
| 2 | rnggrp 13744 | . . 3 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Grp) |
| 4 | eqid 2206 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 4 | subrngss 14006 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 6 | eqid 2206 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 7 | 6 | subrngrng 14008 | . . 3 ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝑅 ↾s 𝐴) ∈ Rng) |
| 8 | rnggrp 13744 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Rng → (𝑅 ↾s 𝐴) ∈ Grp) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
| 10 | 4 | issubg 13553 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
| 11 | 3, 5, 9, 10 | syl3anbrc 1184 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ⊆ wss 3167 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 ↾s cress 12877 Grpcgrp 13376 SubGrpcsubg 13547 Rngcrng 13738 SubRngcsubrng 14003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-ov 5954 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-mulr 12967 df-subg 13550 df-abl 13667 df-rng 13739 df-subrng 14004 |
| This theorem is referenced by: subrngringnsg 14011 subrngbas 14012 subrng0 14013 subrngacl 14014 issubrng2 14016 subrngintm 14018 rng2idl0 14325 rng2idlsubg0 14328 |
| Copyright terms: Public domain | W3C validator |