| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrngsubg | GIF version | ||
| Description: A subring is a subgroup. (Contributed by AV, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| subrngsubg | ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngrcl 14132 | . . 3 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
| 2 | rnggrp 13867 | . . 3 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Grp) |
| 4 | eqid 2209 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 4 | subrngss 14129 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 6 | eqid 2209 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 7 | 6 | subrngrng 14131 | . . 3 ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝑅 ↾s 𝐴) ∈ Rng) |
| 8 | rnggrp 13867 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Rng → (𝑅 ↾s 𝐴) ∈ Grp) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
| 10 | 4 | issubg 13676 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
| 11 | 3, 5, 9, 10 | syl3anbrc 1186 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ⊆ wss 3177 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 ↾s cress 12999 Grpcgrp 13499 SubGrpcsubg 13670 Rngcrng 13861 SubRngcsubrng 14126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-ov 5977 df-inn 9079 df-2 9137 df-3 9138 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-mulr 13090 df-subg 13673 df-abl 13790 df-rng 13862 df-subrng 14127 |
| This theorem is referenced by: subrngringnsg 14134 subrngbas 14135 subrng0 14136 subrngacl 14137 issubrng2 14139 subrngintm 14141 rng2idl0 14448 rng2idlsubg0 14451 |
| Copyright terms: Public domain | W3C validator |