ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngsubg GIF version

Theorem subrngsubg 14010
Description: A subring is a subgroup. (Contributed by AV, 14-Feb-2025.)
Assertion
Ref Expression
subrngsubg (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))

Proof of Theorem subrngsubg
StepHypRef Expression
1 subrngrcl 14009 . . 3 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
2 rnggrp 13744 . . 3 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
31, 2syl 14 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Grp)
4 eqid 2206 . . 3 (Base‘𝑅) = (Base‘𝑅)
54subrngss 14006 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
6 eqid 2206 . . . 4 (𝑅s 𝐴) = (𝑅s 𝐴)
76subrngrng 14008 . . 3 (𝐴 ∈ (SubRng‘𝑅) → (𝑅s 𝐴) ∈ Rng)
8 rnggrp 13744 . . 3 ((𝑅s 𝐴) ∈ Rng → (𝑅s 𝐴) ∈ Grp)
97, 8syl 14 . 2 (𝐴 ∈ (SubRng‘𝑅) → (𝑅s 𝐴) ∈ Grp)
104issubg 13553 . 2 (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Grp))
113, 5, 9, 10syl3anbrc 1184 1 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  wss 3167  cfv 5276  (class class class)co 5951  Basecbs 12876  s cress 12877  Grpcgrp 13376  SubGrpcsubg 13547  Rngcrng 13738  SubRngcsubrng 14003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-ov 5954  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-subg 13550  df-abl 13667  df-rng 13739  df-subrng 14004
This theorem is referenced by:  subrngringnsg  14011  subrngbas  14012  subrng0  14013  subrngacl  14014  issubrng2  14016  subrngintm  14018  rng2idl0  14325  rng2idlsubg0  14328
  Copyright terms: Public domain W3C validator