ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngsubg GIF version

Theorem subrngsubg 13700
Description: A subring is a subgroup. (Contributed by AV, 14-Feb-2025.)
Assertion
Ref Expression
subrngsubg (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))

Proof of Theorem subrngsubg
StepHypRef Expression
1 subrngrcl 13699 . . 3 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
2 rnggrp 13434 . . 3 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
31, 2syl 14 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Grp)
4 eqid 2193 . . 3 (Base‘𝑅) = (Base‘𝑅)
54subrngss 13696 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
6 eqid 2193 . . . 4 (𝑅s 𝐴) = (𝑅s 𝐴)
76subrngrng 13698 . . 3 (𝐴 ∈ (SubRng‘𝑅) → (𝑅s 𝐴) ∈ Rng)
8 rnggrp 13434 . . 3 ((𝑅s 𝐴) ∈ Rng → (𝑅s 𝐴) ∈ Grp)
97, 8syl 14 . 2 (𝐴 ∈ (SubRng‘𝑅) → (𝑅s 𝐴) ∈ Grp)
104issubg 13243 . 2 (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Grp))
113, 5, 9, 10syl3anbrc 1183 1 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wss 3153  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  Grpcgrp 13072  SubGrpcsubg 13237  Rngcrng 13428  SubRngcsubrng 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-subg 13240  df-abl 13357  df-rng 13429  df-subrng 13694
This theorem is referenced by:  subrngringnsg  13701  subrngbas  13702  subrng0  13703  subrngacl  13704  issubrng2  13706  subrngintm  13708  rng2idl0  14015  rng2idlsubg0  14018
  Copyright terms: Public domain W3C validator