ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrng GIF version

Theorem issubrng 13831
Description: The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
issubrng.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
issubrng (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))

Proof of Theorem issubrng
Dummy variables 𝑤 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrng 13830 . . 3 SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Rng})
21mptrcl 5647 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
3 simp1 999 . 2 ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) → 𝑅 ∈ Rng)
4 df-subrng 13830 . . . . 5 SubRng = (𝑟 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ (𝑟s 𝑠) ∈ Rng})
5 fveq2 5561 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
65pweqd 3611 . . . . . 6 (𝑟 = 𝑅 → 𝒫 (Base‘𝑟) = 𝒫 (Base‘𝑅))
7 oveq1 5932 . . . . . . 7 (𝑟 = 𝑅 → (𝑟s 𝑠) = (𝑅s 𝑠))
87eleq1d 2265 . . . . . 6 (𝑟 = 𝑅 → ((𝑟s 𝑠) ∈ Rng ↔ (𝑅s 𝑠) ∈ Rng))
96, 8rabeqbidv 2758 . . . . 5 (𝑟 = 𝑅 → {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ (𝑟s 𝑠) ∈ Rng} = {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng})
10 id 19 . . . . 5 (𝑅 ∈ Rng → 𝑅 ∈ Rng)
11 basfn 12761 . . . . . . . 8 Base Fn V
12 elex 2774 . . . . . . . 8 (𝑅 ∈ Rng → 𝑅 ∈ V)
13 funfvex 5578 . . . . . . . . 9 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1413funfni 5361 . . . . . . . 8 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1511, 12, 14sylancr 414 . . . . . . 7 (𝑅 ∈ Rng → (Base‘𝑅) ∈ V)
1615pwexd 4215 . . . . . 6 (𝑅 ∈ Rng → 𝒫 (Base‘𝑅) ∈ V)
17 rabexg 4177 . . . . . 6 (𝒫 (Base‘𝑅) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ∈ V)
1816, 17syl 14 . . . . 5 (𝑅 ∈ Rng → {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ∈ V)
194, 9, 10, 18fvmptd3 5658 . . . 4 (𝑅 ∈ Rng → (SubRng‘𝑅) = {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng})
2019eleq2d 2266 . . 3 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng}))
21 oveq2 5933 . . . . . 6 (𝑠 = 𝐴 → (𝑅s 𝑠) = (𝑅s 𝐴))
2221eleq1d 2265 . . . . 5 (𝑠 = 𝐴 → ((𝑅s 𝑠) ∈ Rng ↔ (𝑅s 𝐴) ∈ Rng))
2322elrab 2920 . . . 4 (𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ↔ (𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng))
24 issubrng.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
2524eqcomi 2200 . . . . . . . 8 (Base‘𝑅) = 𝐵
2625sseq2i 3211 . . . . . . 7 (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴𝐵)
2726anbi2i 457 . . . . . 6 (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
28 ibar 301 . . . . . 6 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
2927, 28bitrid 192 . . . . 5 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
30 ancom 266 . . . . . 6 ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ∈ 𝒫 (Base‘𝑅)))
31 elpw2g 4190 . . . . . . . 8 ((Base‘𝑅) ∈ V → (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅)))
3215, 31syl 14 . . . . . . 7 (𝑅 ∈ Rng → (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅)))
3332anbi2d 464 . . . . . 6 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ∈ 𝒫 (Base‘𝑅)) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅))))
3430, 33bitrid 192 . . . . 5 (𝑅 ∈ Rng → ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅))))
35 3anass 984 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
3635a1i 9 . . . . 5 (𝑅 ∈ Rng → ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
3729, 34, 363bitr4d 220 . . . 4 (𝑅 ∈ Rng → ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
3823, 37bitrid 192 . . 3 (𝑅 ∈ Rng → (𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
3920, 38bitrd 188 . 2 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
402, 3, 39pm5.21nii 705 1 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763  wss 3157  𝒫 cpw 3606   Fn wfn 5254  cfv 5259  (class class class)co 5925  Basecbs 12703  s cress 12704  Rngcrng 13564  SubRngcsubrng 13829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-subrng 13830
This theorem is referenced by:  subrngss  13832  subrngid  13833  subrngrng  13834  subrngrcl  13835  issubrng2  13842  subsubrng  13846  subrngpropd  13848  rng2idlsubrng  14149
  Copyright terms: Public domain W3C validator