Step | Hyp | Ref
| Expression |
1 | | df-subrng 13538 |
. . 3
⊢ SubRng =
(𝑤 ∈ Rng ↦
{𝑠 ∈ 𝒫
(Base‘𝑤) ∣
(𝑤 ↾s
𝑠) ∈
Rng}) |
2 | 1 | mptrcl 5615 |
. 2
⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) |
3 | | simp1 999 |
. 2
⊢ ((𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵) → 𝑅 ∈ Rng) |
4 | | df-subrng 13538 |
. . . . 5
⊢ SubRng =
(𝑟 ∈ Rng ↦
{𝑠 ∈ 𝒫
(Base‘𝑟) ∣
(𝑟 ↾s
𝑠) ∈
Rng}) |
5 | | fveq2 5531 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
6 | 5 | pweqd 3595 |
. . . . . 6
⊢ (𝑟 = 𝑅 → 𝒫 (Base‘𝑟) = 𝒫 (Base‘𝑅)) |
7 | | oveq1 5899 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑟 ↾s 𝑠) = (𝑅 ↾s 𝑠)) |
8 | 7 | eleq1d 2258 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ((𝑟 ↾s 𝑠) ∈ Rng ↔ (𝑅 ↾s 𝑠) ∈ Rng)) |
9 | 6, 8 | rabeqbidv 2747 |
. . . . 5
⊢ (𝑟 = 𝑅 → {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ (𝑟 ↾s 𝑠) ∈ Rng} = {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ Rng}) |
10 | | id 19 |
. . . . 5
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Rng) |
11 | | basfn 12565 |
. . . . . . . 8
⊢ Base Fn
V |
12 | | elex 2763 |
. . . . . . . 8
⊢ (𝑅 ∈ Rng → 𝑅 ∈ V) |
13 | | funfvex 5548 |
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
14 | 13 | funfni 5332 |
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
15 | 11, 12, 14 | sylancr 414 |
. . . . . . 7
⊢ (𝑅 ∈ Rng →
(Base‘𝑅) ∈
V) |
16 | 15 | pwexd 4196 |
. . . . . 6
⊢ (𝑅 ∈ Rng → 𝒫
(Base‘𝑅) ∈
V) |
17 | | rabexg 4161 |
. . . . . 6
⊢
(𝒫 (Base‘𝑅) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ Rng} ∈ V) |
18 | 16, 17 | syl 14 |
. . . . 5
⊢ (𝑅 ∈ Rng → {𝑠 ∈ 𝒫
(Base‘𝑅) ∣
(𝑅 ↾s
𝑠) ∈ Rng} ∈
V) |
19 | 4, 9, 10, 18 | fvmptd3 5626 |
. . . 4
⊢ (𝑅 ∈ Rng →
(SubRng‘𝑅) = {𝑠 ∈ 𝒫
(Base‘𝑅) ∣
(𝑅 ↾s
𝑠) ∈
Rng}) |
20 | 19 | eleq2d 2259 |
. . 3
⊢ (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ Rng})) |
21 | | oveq2 5900 |
. . . . . 6
⊢ (𝑠 = 𝐴 → (𝑅 ↾s 𝑠) = (𝑅 ↾s 𝐴)) |
22 | 21 | eleq1d 2258 |
. . . . 5
⊢ (𝑠 = 𝐴 → ((𝑅 ↾s 𝑠) ∈ Rng ↔ (𝑅 ↾s 𝐴) ∈ Rng)) |
23 | 22 | elrab 2908 |
. . . 4
⊢ (𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ Rng} ↔ (𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Rng)) |
24 | | issubrng.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑅) |
25 | 24 | eqcomi 2193 |
. . . . . . . 8
⊢
(Base‘𝑅) =
𝐵 |
26 | 25 | sseq2i 3197 |
. . . . . . 7
⊢ (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴 ⊆ 𝐵) |
27 | 26 | anbi2i 457 |
. . . . . 6
⊢ (((𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) ↔ ((𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵)) |
28 | | ibar 301 |
. . . . . 6
⊢ (𝑅 ∈ Rng → (((𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵)))) |
29 | 27, 28 | bitrid 192 |
. . . . 5
⊢ (𝑅 ∈ Rng → (((𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) ↔ (𝑅 ∈ Rng ∧ ((𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵)))) |
30 | | ancom 266 |
. . . . . 6
⊢ ((𝐴 ∈ 𝒫
(Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Rng) ↔ ((𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ∈ 𝒫
(Base‘𝑅))) |
31 | | elpw2g 4171 |
. . . . . . . 8
⊢
((Base‘𝑅)
∈ V → (𝐴 ∈
𝒫 (Base‘𝑅)
↔ 𝐴 ⊆
(Base‘𝑅))) |
32 | 15, 31 | syl 14 |
. . . . . . 7
⊢ (𝑅 ∈ Rng → (𝐴 ∈ 𝒫
(Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅))) |
33 | 32 | anbi2d 464 |
. . . . . 6
⊢ (𝑅 ∈ Rng → (((𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ∈ 𝒫
(Base‘𝑅)) ↔
((𝑅 ↾s
𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)))) |
34 | 30, 33 | bitrid 192 |
. . . . 5
⊢ (𝑅 ∈ Rng → ((𝐴 ∈ 𝒫
(Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Rng) ↔ ((𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)))) |
35 | | 3anass 984 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵))) |
36 | 35 | a1i 9 |
. . . . 5
⊢ (𝑅 ∈ Rng → ((𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵)))) |
37 | 29, 34, 36 | 3bitr4d 220 |
. . . 4
⊢ (𝑅 ∈ Rng → ((𝐴 ∈ 𝒫
(Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Rng) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵))) |
38 | 23, 37 | bitrid 192 |
. . 3
⊢ (𝑅 ∈ Rng → (𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ Rng} ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵))) |
39 | 20, 38 | bitrd 188 |
. 2
⊢ (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵))) |
40 | 2, 3, 39 | pm5.21nii 705 |
1
⊢ (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵)) |