ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrng GIF version

Theorem issubrng 13879
Description: The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
issubrng.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
issubrng (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))

Proof of Theorem issubrng
Dummy variables 𝑤 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrng 13878 . . 3 SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Rng})
21mptrcl 5656 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
3 simp1 999 . 2 ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) → 𝑅 ∈ Rng)
4 df-subrng 13878 . . . . 5 SubRng = (𝑟 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ (𝑟s 𝑠) ∈ Rng})
5 fveq2 5570 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
65pweqd 3620 . . . . . 6 (𝑟 = 𝑅 → 𝒫 (Base‘𝑟) = 𝒫 (Base‘𝑅))
7 oveq1 5941 . . . . . . 7 (𝑟 = 𝑅 → (𝑟s 𝑠) = (𝑅s 𝑠))
87eleq1d 2273 . . . . . 6 (𝑟 = 𝑅 → ((𝑟s 𝑠) ∈ Rng ↔ (𝑅s 𝑠) ∈ Rng))
96, 8rabeqbidv 2766 . . . . 5 (𝑟 = 𝑅 → {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ (𝑟s 𝑠) ∈ Rng} = {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng})
10 id 19 . . . . 5 (𝑅 ∈ Rng → 𝑅 ∈ Rng)
11 basfn 12809 . . . . . . . 8 Base Fn V
12 elex 2782 . . . . . . . 8 (𝑅 ∈ Rng → 𝑅 ∈ V)
13 funfvex 5587 . . . . . . . . 9 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1413funfni 5370 . . . . . . . 8 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1511, 12, 14sylancr 414 . . . . . . 7 (𝑅 ∈ Rng → (Base‘𝑅) ∈ V)
1615pwexd 4224 . . . . . 6 (𝑅 ∈ Rng → 𝒫 (Base‘𝑅) ∈ V)
17 rabexg 4186 . . . . . 6 (𝒫 (Base‘𝑅) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ∈ V)
1816, 17syl 14 . . . . 5 (𝑅 ∈ Rng → {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ∈ V)
194, 9, 10, 18fvmptd3 5667 . . . 4 (𝑅 ∈ Rng → (SubRng‘𝑅) = {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng})
2019eleq2d 2274 . . 3 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng}))
21 oveq2 5942 . . . . . 6 (𝑠 = 𝐴 → (𝑅s 𝑠) = (𝑅s 𝐴))
2221eleq1d 2273 . . . . 5 (𝑠 = 𝐴 → ((𝑅s 𝑠) ∈ Rng ↔ (𝑅s 𝐴) ∈ Rng))
2322elrab 2928 . . . 4 (𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ↔ (𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng))
24 issubrng.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
2524eqcomi 2208 . . . . . . . 8 (Base‘𝑅) = 𝐵
2625sseq2i 3219 . . . . . . 7 (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴𝐵)
2726anbi2i 457 . . . . . 6 (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
28 ibar 301 . . . . . 6 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
2927, 28bitrid 192 . . . . 5 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
30 ancom 266 . . . . . 6 ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ∈ 𝒫 (Base‘𝑅)))
31 elpw2g 4199 . . . . . . . 8 ((Base‘𝑅) ∈ V → (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅)))
3215, 31syl 14 . . . . . . 7 (𝑅 ∈ Rng → (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅)))
3332anbi2d 464 . . . . . 6 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ∈ 𝒫 (Base‘𝑅)) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅))))
3430, 33bitrid 192 . . . . 5 (𝑅 ∈ Rng → ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅))))
35 3anass 984 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
3635a1i 9 . . . . 5 (𝑅 ∈ Rng → ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
3729, 34, 363bitr4d 220 . . . 4 (𝑅 ∈ Rng → ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
3823, 37bitrid 192 . . 3 (𝑅 ∈ Rng → (𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
3920, 38bitrd 188 . 2 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
402, 3, 39pm5.21nii 705 1 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  {crab 2487  Vcvv 2771  wss 3165  𝒫 cpw 3615   Fn wfn 5263  cfv 5268  (class class class)co 5934  Basecbs 12751  s cress 12752  Rngcrng 13612  SubRngcsubrng 13877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-ov 5937  df-inn 9019  df-ndx 12754  df-slot 12755  df-base 12757  df-subrng 13878
This theorem is referenced by:  subrngss  13880  subrngid  13881  subrngrng  13882  subrngrcl  13883  issubrng2  13890  subsubrng  13894  subrngpropd  13896  rng2idlsubrng  14197
  Copyright terms: Public domain W3C validator