ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrng GIF version

Theorem issubrng 14036
Description: The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
issubrng.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
issubrng (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))

Proof of Theorem issubrng
Dummy variables 𝑤 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrng 14035 . . 3 SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Rng})
21mptrcl 5675 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
3 simp1 1000 . 2 ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) → 𝑅 ∈ Rng)
4 df-subrng 14035 . . . . 5 SubRng = (𝑟 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ (𝑟s 𝑠) ∈ Rng})
5 fveq2 5589 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
65pweqd 3626 . . . . . 6 (𝑟 = 𝑅 → 𝒫 (Base‘𝑟) = 𝒫 (Base‘𝑅))
7 oveq1 5964 . . . . . . 7 (𝑟 = 𝑅 → (𝑟s 𝑠) = (𝑅s 𝑠))
87eleq1d 2275 . . . . . 6 (𝑟 = 𝑅 → ((𝑟s 𝑠) ∈ Rng ↔ (𝑅s 𝑠) ∈ Rng))
96, 8rabeqbidv 2768 . . . . 5 (𝑟 = 𝑅 → {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ (𝑟s 𝑠) ∈ Rng} = {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng})
10 id 19 . . . . 5 (𝑅 ∈ Rng → 𝑅 ∈ Rng)
11 basfn 12965 . . . . . . . 8 Base Fn V
12 elex 2785 . . . . . . . 8 (𝑅 ∈ Rng → 𝑅 ∈ V)
13 funfvex 5606 . . . . . . . . 9 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1413funfni 5385 . . . . . . . 8 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1511, 12, 14sylancr 414 . . . . . . 7 (𝑅 ∈ Rng → (Base‘𝑅) ∈ V)
1615pwexd 4233 . . . . . 6 (𝑅 ∈ Rng → 𝒫 (Base‘𝑅) ∈ V)
17 rabexg 4195 . . . . . 6 (𝒫 (Base‘𝑅) ∈ V → {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ∈ V)
1816, 17syl 14 . . . . 5 (𝑅 ∈ Rng → {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ∈ V)
194, 9, 10, 18fvmptd3 5686 . . . 4 (𝑅 ∈ Rng → (SubRng‘𝑅) = {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng})
2019eleq2d 2276 . . 3 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng}))
21 oveq2 5965 . . . . . 6 (𝑠 = 𝐴 → (𝑅s 𝑠) = (𝑅s 𝐴))
2221eleq1d 2275 . . . . 5 (𝑠 = 𝐴 → ((𝑅s 𝑠) ∈ Rng ↔ (𝑅s 𝐴) ∈ Rng))
2322elrab 2933 . . . 4 (𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ↔ (𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng))
24 issubrng.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
2524eqcomi 2210 . . . . . . . 8 (Base‘𝑅) = 𝐵
2625sseq2i 3224 . . . . . . 7 (𝐴 ⊆ (Base‘𝑅) ↔ 𝐴𝐵)
2726anbi2i 457 . . . . . 6 (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
28 ibar 301 . . . . . 6 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
2927, 28bitrid 192 . . . . 5 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
30 ancom 266 . . . . . 6 ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ∈ 𝒫 (Base‘𝑅)))
31 elpw2g 4208 . . . . . . . 8 ((Base‘𝑅) ∈ V → (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅)))
3215, 31syl 14 . . . . . . 7 (𝑅 ∈ Rng → (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅)))
3332anbi2d 464 . . . . . 6 (𝑅 ∈ Rng → (((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ∈ 𝒫 (Base‘𝑅)) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅))))
3430, 33bitrid 192 . . . . 5 (𝑅 ∈ Rng → ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅))))
35 3anass 985 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
3635a1i 9 . . . . 5 (𝑅 ∈ Rng → ((𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵) ↔ (𝑅 ∈ Rng ∧ ((𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))))
3729, 34, 363bitr4d 220 . . . 4 (𝑅 ∈ Rng → ((𝐴 ∈ 𝒫 (Base‘𝑅) ∧ (𝑅s 𝐴) ∈ Rng) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
3823, 37bitrid 192 . . 3 (𝑅 ∈ Rng → (𝐴 ∈ {𝑠 ∈ 𝒫 (Base‘𝑅) ∣ (𝑅s 𝑠) ∈ Rng} ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
3920, 38bitrd 188 . 2 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵)))
402, 3, 39pm5.21nii 706 1 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  {crab 2489  Vcvv 2773  wss 3170  𝒫 cpw 3621   Fn wfn 5275  cfv 5280  (class class class)co 5957  Basecbs 12907  s cress 12908  Rngcrng 13769  SubRngcsubrng 14034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-ov 5960  df-inn 9057  df-ndx 12910  df-slot 12911  df-base 12913  df-subrng 14035
This theorem is referenced by:  subrngss  14037  subrngid  14038  subrngrng  14039  subrngrcl  14040  issubrng2  14047  subsubrng  14051  subrngpropd  14053  rng2idlsubrng  14354
  Copyright terms: Public domain W3C validator