MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cxpd Structured version   Visualization version   GIF version

Theorem 0cxpd 25846
Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
cxp0d.1 (𝜑𝐴 ∈ ℂ)
cxpefd.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
0cxpd (𝜑 → (0↑𝑐𝐴) = 0)

Proof of Theorem 0cxpd
StepHypRef Expression
1 cxp0d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 cxpefd.2 . 2 (𝜑𝐴 ≠ 0)
3 0cxp 25802 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0)
41, 2, 3syl2anc 583 1 (𝜑 → (0↑𝑐𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  wne 2944  (class class class)co 7268  cc 10853  0cc0 10855  𝑐ccxp 25692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-mulcl 10917  ax-i2m1 10923
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-cxp 25694
This theorem is referenced by:  cxpcn3lem  25881  cxpcn3  25882  cxpaddle  25886  cxpeq  25891  amgm  26121  abvcxp  26744  padicabvcxp  26761
  Copyright terms: Public domain W3C validator