MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cxpd Structured version   Visualization version   GIF version

Theorem 0cxpd 26626
Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
cxp0d.1 (𝜑𝐴 ∈ ℂ)
cxpefd.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
0cxpd (𝜑 → (0↑𝑐𝐴) = 0)

Proof of Theorem 0cxpd
StepHypRef Expression
1 cxp0d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 cxpefd.2 . 2 (𝜑𝐴 ≠ 0)
3 0cxp 26582 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0)
41, 2, 3syl2anc 584 1 (𝜑 → (0↑𝑐𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  (class class class)co 7390  cc 11073  0cc0 11075  𝑐ccxp 26471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-mulcl 11137  ax-i2m1 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-cxp 26473
This theorem is referenced by:  cxpcn3lem  26664  cxpcn3  26665  cxpaddle  26669  cxpeq  26674  amgm  26908  abvcxp  27533  padicabvcxp  27550
  Copyright terms: Public domain W3C validator