| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0cxpd | Structured version Visualization version GIF version | ||
| Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| cxp0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| cxpefd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Ref | Expression |
|---|---|
| 0cxpd | ⊢ (𝜑 → (0↑𝑐𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxp0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | cxpefd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | 0cxp 26592 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (0↑𝑐𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7353 ℂcc 11026 0cc0 11028 ↑𝑐ccxp 26481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-i2m1 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-cxp 26483 |
| This theorem is referenced by: cxpcn3lem 26674 cxpcn3 26675 cxpaddle 26679 cxpeq 26684 amgm 26918 abvcxp 27543 padicabvcxp 27560 |
| Copyright terms: Public domain | W3C validator |