MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3lem Structured version   Visualization version   GIF version

Theorem cxpcn3lem 25900
Description: Lemma for cxpcn3 25901. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d 𝐷 = (ℜ “ ℝ+)
cxpcn3.j 𝐽 = (TopOpen‘ℂfld)
cxpcn3.k 𝐾 = (𝐽t (0[,)+∞))
cxpcn3.l 𝐿 = (𝐽t 𝐷)
cxpcn3.u 𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2)
cxpcn3.t 𝑇 = if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈)))
Assertion
Ref Expression
cxpcn3lem ((𝐴𝐷𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
Distinct variable groups:   𝑎,𝑏,𝑑,𝐴   𝐸,𝑎,𝑏,𝑑   𝐽,𝑑   𝐾,𝑎,𝑏,𝑑   𝐷,𝑎,𝑏,𝑑   𝐿,𝑎,𝑏,𝑑   𝑇,𝑎,𝑏,𝑑
Allowed substitution hints:   𝑈(𝑎,𝑏,𝑑)   𝐽(𝑎,𝑏)

Proof of Theorem cxpcn3lem
StepHypRef Expression
1 cxpcn3.t . . 3 𝑇 = if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈)))
2 cxpcn3.u . . . . 5 𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2)
3 cxpcn3.d . . . . . . . . . . 11 𝐷 = (ℜ “ ℝ+)
43eleq2i 2830 . . . . . . . . . 10 (𝐴𝐷𝐴 ∈ (ℜ “ ℝ+))
5 ref 14823 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
6 ffn 6600 . . . . . . . . . . 11 (ℜ:ℂ⟶ℝ → ℜ Fn ℂ)
7 elpreima 6935 . . . . . . . . . . 11 (ℜ Fn ℂ → (𝐴 ∈ (ℜ “ ℝ+) ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+)))
85, 6, 7mp2b 10 . . . . . . . . . 10 (𝐴 ∈ (ℜ “ ℝ+) ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+))
94, 8bitri 274 . . . . . . . . 9 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+))
109simprbi 497 . . . . . . . 8 (𝐴𝐷 → (ℜ‘𝐴) ∈ ℝ+)
1110adantr 481 . . . . . . 7 ((𝐴𝐷𝐸 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ+)
12 1rp 12734 . . . . . . 7 1 ∈ ℝ+
13 ifcl 4504 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ+ ∧ 1 ∈ ℝ+) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
1411, 12, 13sylancl 586 . . . . . 6 ((𝐴𝐷𝐸 ∈ ℝ+) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
1514rphalfcld 12784 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ∈ ℝ+)
162, 15eqeltrid 2843 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝑈 ∈ ℝ+)
17 simpr 485 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝐸 ∈ ℝ+)
1816rpreccld 12782 . . . . . 6 ((𝐴𝐷𝐸 ∈ ℝ+) → (1 / 𝑈) ∈ ℝ+)
1918rpred 12772 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → (1 / 𝑈) ∈ ℝ)
2017, 19rpcxpcld 25887 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ+)
2116, 20ifcld 4505 . . 3 ((𝐴𝐷𝐸 ∈ ℝ+) → if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ∈ ℝ+)
221, 21eqeltrid 2843 . 2 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝑇 ∈ ℝ+)
23 elrege0 13186 . . . 4 (𝑎 ∈ (0[,)+∞) ↔ (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎))
24 0red 10978 . . . . . . 7 ((𝐴𝐷𝐸 ∈ ℝ+) → 0 ∈ ℝ)
25 leloe 11061 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (0 < 𝑎 ∨ 0 = 𝑎)))
2624, 25sylan 580 . . . . . 6 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (0 < 𝑎 ∨ 0 = 𝑎)))
27 elrp 12732 . . . . . . . . 9 (𝑎 ∈ ℝ+ ↔ (𝑎 ∈ ℝ ∧ 0 < 𝑎))
28 simp2l 1198 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℝ+)
29 simp2r 1199 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑏𝐷)
30 cnvimass 5989 . . . . . . . . . . . . . . . . . 18 (ℜ “ ℝ+) ⊆ dom ℜ
315fdmi 6612 . . . . . . . . . . . . . . . . . 18 dom ℜ = ℂ
3230, 31sseqtri 3957 . . . . . . . . . . . . . . . . 17 (ℜ “ ℝ+) ⊆ ℂ
333, 32eqsstri 3955 . . . . . . . . . . . . . . . 16 𝐷 ⊆ ℂ
3433sseli 3917 . . . . . . . . . . . . . . 15 (𝑏𝐷𝑏 ∈ ℂ)
3529, 34syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑏 ∈ ℂ)
36 abscxp 25847 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ) → (abs‘(𝑎𝑐𝑏)) = (𝑎𝑐(ℜ‘𝑏)))
3728, 35, 36syl2anc 584 . . . . . . . . . . . . 13 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝑎𝑐𝑏)) = (𝑎𝑐(ℜ‘𝑏)))
3835recld 14905 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝑏) ∈ ℝ)
3928, 38rpcxpcld 25887 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) ∈ ℝ+)
4039rpred 12772 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) ∈ ℝ)
41163ad2ant1 1132 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ∈ ℝ+)
4241rpred 12772 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ∈ ℝ)
4328, 42rpcxpcld 25887 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) ∈ ℝ+)
4443rpred 12772 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) ∈ ℝ)
45 simp1r 1197 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐸 ∈ ℝ+)
4645rpred 12772 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐸 ∈ ℝ)
47 simp1l 1196 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐴𝐷)
489simplbi 498 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐷𝐴 ∈ ℂ)
4947, 48syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐴 ∈ ℂ)
5049recld 14905 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) ∈ ℝ)
5150rehalfcld 12220 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) / 2) ∈ ℝ)
52 1re 10975 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
53 min1 12923 . . . . . . . . . . . . . . . . . . 19 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴))
5450, 52, 53sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴))
55143ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
5655rpred 12772 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ)
57 2re 12047 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
5857a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 2 ∈ ℝ)
59 2pos 12076 . . . . . . . . . . . . . . . . . . . 20 0 < 2
6059a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 0 < 2)
61 lediv1 11840 . . . . . . . . . . . . . . . . . . 19 ((if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴) ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2)))
6256, 50, 58, 60, 61syl112anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴) ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2)))
6354, 62mpbid 231 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2))
642, 63eqbrtrid 5109 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ≤ ((ℜ‘𝐴) / 2))
6550recnd 11003 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) ∈ ℂ)
66652halvesd 12219 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) = (ℜ‘𝐴))
6749, 35resubd 14927 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) = ((ℜ‘𝐴) − (ℜ‘𝑏)))
6849, 35subcld 11332 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐴𝑏) ∈ ℂ)
6968recld 14905 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) ∈ ℝ)
7068abscld 15148 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) ∈ ℝ)
7168releabsd 15163 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) ≤ (abs‘(𝐴𝑏)))
72 simp3r 1201 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < 𝑇)
7372, 1breqtrdi 5115 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))))
74203ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ+)
7574rpred 12772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ)
76 ltmin 12928 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((abs‘(𝐴𝑏)) ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐸𝑐(1 / 𝑈)) ∈ ℝ) → ((abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈)))))
7770, 42, 75, 76syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈)))))
7873, 77mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈))))
7978simpld 495 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < 𝑈)
8069, 70, 42, 71, 79lelttrd 11133 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) < 𝑈)
8169, 42, 51, 80, 64ltletrd 11135 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) < ((ℜ‘𝐴) / 2))
8267, 81eqbrtrrd 5098 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) − (ℜ‘𝑏)) < ((ℜ‘𝐴) / 2))
8350, 38, 51ltsubadd2d 11573 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) − (ℜ‘𝑏)) < ((ℜ‘𝐴) / 2) ↔ (ℜ‘𝐴) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2))))
8482, 83mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2)))
8566, 84eqbrtrd 5096 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2)))
8651, 38, 51ltadd1d 11568 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) < (ℜ‘𝑏) ↔ (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2))))
8785, 86mpbird 256 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) / 2) < (ℜ‘𝑏))
8842, 51, 38, 64, 87lelttrd 11133 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 < (ℜ‘𝑏))
8928rpred 12772 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℝ)
9052a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 1 ∈ ℝ)
9128rprege0d 12779 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎))
92 absid 15008 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘𝑎) = 𝑎)
94 simp3l 1200 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘𝑎) < 𝑇)
9593, 94eqbrtrrd 5098 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 𝑇)
9695, 1breqtrdi 5115 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))))
97 ltmin 12928 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐸𝑐(1 / 𝑈)) ∈ ℝ) → (𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈)))))
9889, 42, 75, 97syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈)))))
9996, 98mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈))))
10099simpld 495 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 𝑈)
101 rehalfcl 12199 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℝ → (1 / 2) ∈ ℝ)
10252, 101mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 2) ∈ ℝ)
103 min2 12924 . . . . . . . . . . . . . . . . . . . . 21 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1)
10450, 52, 103sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1)
105 lediv1 11840 . . . . . . . . . . . . . . . . . . . . 21 ((if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1 ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2)))
10656, 90, 58, 60, 105syl112anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1 ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2)))
107104, 106mpbid 231 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2))
1082, 107eqbrtrid 5109 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ≤ (1 / 2))
109 halflt1 12191 . . . . . . . . . . . . . . . . . . 19 (1 / 2) < 1
110109a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 2) < 1)
11142, 102, 90, 108, 110lelttrd 11133 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 < 1)
11289, 42, 90, 100, 111lttrd 11136 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 1)
11328, 42, 112, 38cxplt3d 25889 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 < (ℜ‘𝑏) ↔ (𝑎𝑐(ℜ‘𝑏)) < (𝑎𝑐𝑈)))
11488, 113mpbid 231 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) < (𝑎𝑐𝑈))
11541rpcnne0d 12781 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0))
116 recid 11647 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 · (1 / 𝑈)) = 1)
117115, 116syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 · (1 / 𝑈)) = 1)
118117oveq2d 7291 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(𝑈 · (1 / 𝑈))) = (𝑎𝑐1))
11941rpreccld 12782 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 𝑈) ∈ ℝ+)
120119rpcnd 12774 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 𝑈) ∈ ℂ)
12128, 42, 120cxpmuld 25891 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(𝑈 · (1 / 𝑈))) = ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)))
12228rpcnd 12774 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℂ)
123122cxp1d 25861 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐1) = 𝑎)
124118, 121, 1233eqtr3d 2786 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) = 𝑎)
12599simprd 496 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < (𝐸𝑐(1 / 𝑈)))
126124, 125eqbrtrd 5096 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈)))
12743rprege0d 12779 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈) ∈ ℝ ∧ 0 ≤ (𝑎𝑐𝑈)))
12845rprege0d 12779 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸))
129 cxplt2 25853 . . . . . . . . . . . . . . . 16 ((((𝑎𝑐𝑈) ∈ ℝ ∧ 0 ≤ (𝑎𝑐𝑈)) ∧ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸) ∧ (1 / 𝑈) ∈ ℝ+) → ((𝑎𝑐𝑈) < 𝐸 ↔ ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈))))
130127, 128, 119, 129syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈) < 𝐸 ↔ ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈))))
131126, 130mpbird 256 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) < 𝐸)
13240, 44, 46, 114, 131lttrd 11136 . . . . . . . . . . . . 13 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) < 𝐸)
13337, 132eqbrtrd 5096 . . . . . . . . . . . 12 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝑎𝑐𝑏)) < 𝐸)
1341333expia 1120 . . . . . . . . . . 11 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷)) → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
135134anassrs 468 . . . . . . . . . 10 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ 𝑏𝐷) → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
136135ralrimiva 3103 . . . . . . . . 9 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
13727, 136sylan2br 595 . . . . . . . 8 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
138137expr 457 . . . . . . 7 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 < 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
139 elpreima 6935 . . . . . . . . . . . . . . . . . . 19 (ℜ Fn ℂ → (𝑏 ∈ (ℜ “ ℝ+) ↔ (𝑏 ∈ ℂ ∧ (ℜ‘𝑏) ∈ ℝ+)))
1405, 6, 139mp2b 10 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (ℜ “ ℝ+) ↔ (𝑏 ∈ ℂ ∧ (ℜ‘𝑏) ∈ ℝ+))
141140simprbi 497 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (ℜ “ ℝ+) → (ℜ‘𝑏) ∈ ℝ+)
142141, 3eleq2s 2857 . . . . . . . . . . . . . . . 16 (𝑏𝐷 → (ℜ‘𝑏) ∈ ℝ+)
143142rpne0d 12777 . . . . . . . . . . . . . . 15 (𝑏𝐷 → (ℜ‘𝑏) ≠ 0)
144 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑏 = 0 → (ℜ‘𝑏) = (ℜ‘0))
145 re0 14863 . . . . . . . . . . . . . . . . 17 (ℜ‘0) = 0
146144, 145eqtrdi 2794 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → (ℜ‘𝑏) = 0)
147146necon3i 2976 . . . . . . . . . . . . . . 15 ((ℜ‘𝑏) ≠ 0 → 𝑏 ≠ 0)
148143, 147syl 17 . . . . . . . . . . . . . 14 (𝑏𝐷𝑏 ≠ 0)
14934, 1480cxpd 25865 . . . . . . . . . . . . 13 (𝑏𝐷 → (0↑𝑐𝑏) = 0)
150149adantl 482 . . . . . . . . . . . 12 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0↑𝑐𝑏) = 0)
151150abs00bd 15003 . . . . . . . . . . 11 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (abs‘(0↑𝑐𝑏)) = 0)
152 simpllr 773 . . . . . . . . . . . 12 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → 𝐸 ∈ ℝ+)
153152rpgt0d 12775 . . . . . . . . . . 11 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → 0 < 𝐸)
154151, 153eqbrtrd 5096 . . . . . . . . . 10 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (abs‘(0↑𝑐𝑏)) < 𝐸)
155 fvoveq1 7298 . . . . . . . . . . 11 (0 = 𝑎 → (abs‘(0↑𝑐𝑏)) = (abs‘(𝑎𝑐𝑏)))
156155breq1d 5084 . . . . . . . . . 10 (0 = 𝑎 → ((abs‘(0↑𝑐𝑏)) < 𝐸 ↔ (abs‘(𝑎𝑐𝑏)) < 𝐸))
157154, 156syl5ibcom 244 . . . . . . . . 9 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0 = 𝑎 → (abs‘(𝑎𝑐𝑏)) < 𝐸))
158157a1dd 50 . . . . . . . 8 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0 = 𝑎 → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
159158ralrimdva 3106 . . . . . . 7 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 = 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
160138, 159jaod 856 . . . . . 6 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → ((0 < 𝑎 ∨ 0 = 𝑎) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
16126, 160sylbid 239 . . . . 5 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
162161expimpd 454 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
16323, 162syl5bi 241 . . 3 ((𝐴𝐷𝐸 ∈ ℝ+) → (𝑎 ∈ (0[,)+∞) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
164163ralrimiv 3102 . 2 ((𝐴𝐷𝐸 ∈ ℝ+) → ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
165 breq2 5078 . . . . . 6 (𝑑 = 𝑇 → ((abs‘𝑎) < 𝑑 ↔ (abs‘𝑎) < 𝑇))
166 breq2 5078 . . . . . 6 (𝑑 = 𝑇 → ((abs‘(𝐴𝑏)) < 𝑑 ↔ (abs‘(𝐴𝑏)) < 𝑇))
167165, 166anbi12d 631 . . . . 5 (𝑑 = 𝑇 → (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) ↔ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)))
168167imbi1d 342 . . . 4 (𝑑 = 𝑇 → ((((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸) ↔ (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
1691682ralbidv 3129 . . 3 (𝑑 = 𝑇 → (∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸) ↔ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
170169rspcev 3561 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
17122, 164, 170syl2anc 584 1 ((𝐴𝐷𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  ifcif 4459   class class class wbr 5074  ccnv 5588  dom cdm 5589  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  +crp 12730  [,)cico 13081  cre 14808  abscabs 14945  t crest 17131  TopOpenctopn 17132  fldccnfld 20597  𝑐ccxp 25711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713
This theorem is referenced by:  cxpcn3  25901
  Copyright terms: Public domain W3C validator