MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3lem Structured version   Visualization version   GIF version

Theorem cxpcn3lem 25241
Description: Lemma for cxpcn3 25242. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d 𝐷 = (ℜ “ ℝ+)
cxpcn3.j 𝐽 = (TopOpen‘ℂfld)
cxpcn3.k 𝐾 = (𝐽t (0[,)+∞))
cxpcn3.l 𝐿 = (𝐽t 𝐷)
cxpcn3.u 𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2)
cxpcn3.t 𝑇 = if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈)))
Assertion
Ref Expression
cxpcn3lem ((𝐴𝐷𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
Distinct variable groups:   𝑎,𝑏,𝑑,𝐴   𝐸,𝑎,𝑏,𝑑   𝐽,𝑑   𝐾,𝑎,𝑏,𝑑   𝐷,𝑎,𝑏,𝑑   𝐿,𝑎,𝑏,𝑑   𝑇,𝑎,𝑏,𝑑
Allowed substitution hints:   𝑈(𝑎,𝑏,𝑑)   𝐽(𝑎,𝑏)

Proof of Theorem cxpcn3lem
StepHypRef Expression
1 cxpcn3.t . . 3 𝑇 = if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈)))
2 cxpcn3.u . . . . 5 𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2)
3 cxpcn3.d . . . . . . . . . . 11 𝐷 = (ℜ “ ℝ+)
43eleq2i 2909 . . . . . . . . . 10 (𝐴𝐷𝐴 ∈ (ℜ “ ℝ+))
5 ref 14461 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
6 ffn 6511 . . . . . . . . . . 11 (ℜ:ℂ⟶ℝ → ℜ Fn ℂ)
7 elpreima 6824 . . . . . . . . . . 11 (ℜ Fn ℂ → (𝐴 ∈ (ℜ “ ℝ+) ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+)))
85, 6, 7mp2b 10 . . . . . . . . . 10 (𝐴 ∈ (ℜ “ ℝ+) ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+))
94, 8bitri 276 . . . . . . . . 9 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+))
109simprbi 497 . . . . . . . 8 (𝐴𝐷 → (ℜ‘𝐴) ∈ ℝ+)
1110adantr 481 . . . . . . 7 ((𝐴𝐷𝐸 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ+)
12 1rp 12383 . . . . . . 7 1 ∈ ℝ+
13 ifcl 4514 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ+ ∧ 1 ∈ ℝ+) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
1411, 12, 13sylancl 586 . . . . . 6 ((𝐴𝐷𝐸 ∈ ℝ+) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
1514rphalfcld 12433 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ∈ ℝ+)
162, 15eqeltrid 2922 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝑈 ∈ ℝ+)
17 simpr 485 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝐸 ∈ ℝ+)
1816rpreccld 12431 . . . . . 6 ((𝐴𝐷𝐸 ∈ ℝ+) → (1 / 𝑈) ∈ ℝ+)
1918rpred 12421 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → (1 / 𝑈) ∈ ℝ)
2017, 19rpcxpcld 25228 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ+)
2116, 20ifcld 4515 . . 3 ((𝐴𝐷𝐸 ∈ ℝ+) → if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ∈ ℝ+)
221, 21eqeltrid 2922 . 2 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝑇 ∈ ℝ+)
23 elrege0 12832 . . . 4 (𝑎 ∈ (0[,)+∞) ↔ (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎))
24 0red 10633 . . . . . . 7 ((𝐴𝐷𝐸 ∈ ℝ+) → 0 ∈ ℝ)
25 leloe 10716 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (0 < 𝑎 ∨ 0 = 𝑎)))
2624, 25sylan 580 . . . . . 6 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (0 < 𝑎 ∨ 0 = 𝑎)))
27 elrp 12381 . . . . . . . . 9 (𝑎 ∈ ℝ+ ↔ (𝑎 ∈ ℝ ∧ 0 < 𝑎))
28 simp2l 1193 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℝ+)
29 simp2r 1194 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑏𝐷)
30 cnvimass 5947 . . . . . . . . . . . . . . . . . 18 (ℜ “ ℝ+) ⊆ dom ℜ
315fdmi 6521 . . . . . . . . . . . . . . . . . 18 dom ℜ = ℂ
3230, 31sseqtri 4007 . . . . . . . . . . . . . . . . 17 (ℜ “ ℝ+) ⊆ ℂ
333, 32eqsstri 4005 . . . . . . . . . . . . . . . 16 𝐷 ⊆ ℂ
3433sseli 3967 . . . . . . . . . . . . . . 15 (𝑏𝐷𝑏 ∈ ℂ)
3529, 34syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑏 ∈ ℂ)
36 abscxp 25188 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ) → (abs‘(𝑎𝑐𝑏)) = (𝑎𝑐(ℜ‘𝑏)))
3728, 35, 36syl2anc 584 . . . . . . . . . . . . 13 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝑎𝑐𝑏)) = (𝑎𝑐(ℜ‘𝑏)))
3835recld 14543 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝑏) ∈ ℝ)
3928, 38rpcxpcld 25228 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) ∈ ℝ+)
4039rpred 12421 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) ∈ ℝ)
41163ad2ant1 1127 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ∈ ℝ+)
4241rpred 12421 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ∈ ℝ)
4328, 42rpcxpcld 25228 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) ∈ ℝ+)
4443rpred 12421 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) ∈ ℝ)
45 simp1r 1192 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐸 ∈ ℝ+)
4645rpred 12421 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐸 ∈ ℝ)
47 simp1l 1191 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐴𝐷)
489simplbi 498 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐷𝐴 ∈ ℂ)
4947, 48syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐴 ∈ ℂ)
5049recld 14543 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) ∈ ℝ)
5150rehalfcld 11873 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) / 2) ∈ ℝ)
52 1re 10630 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
53 min1 12572 . . . . . . . . . . . . . . . . . . 19 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴))
5450, 52, 53sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴))
55143ad2ant1 1127 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
5655rpred 12421 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ)
57 2re 11700 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
5857a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 2 ∈ ℝ)
59 2pos 11729 . . . . . . . . . . . . . . . . . . . 20 0 < 2
6059a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 0 < 2)
61 lediv1 11494 . . . . . . . . . . . . . . . . . . 19 ((if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴) ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2)))
6256, 50, 58, 60, 61syl112anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴) ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2)))
6354, 62mpbid 233 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2))
642, 63eqbrtrid 5098 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ≤ ((ℜ‘𝐴) / 2))
6550recnd 10658 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) ∈ ℂ)
66652halvesd 11872 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) = (ℜ‘𝐴))
6749, 35resubd 14565 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) = ((ℜ‘𝐴) − (ℜ‘𝑏)))
6849, 35subcld 10986 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐴𝑏) ∈ ℂ)
6968recld 14543 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) ∈ ℝ)
7068abscld 14786 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) ∈ ℝ)
7168releabsd 14801 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) ≤ (abs‘(𝐴𝑏)))
72 simp3r 1196 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < 𝑇)
7372, 1breqtrdi 5104 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))))
74203ad2ant1 1127 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ+)
7574rpred 12421 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ)
76 ltmin 12577 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((abs‘(𝐴𝑏)) ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐸𝑐(1 / 𝑈)) ∈ ℝ) → ((abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈)))))
7770, 42, 75, 76syl3anc 1365 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈)))))
7873, 77mpbid 233 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈))))
7978simpld 495 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < 𝑈)
8069, 70, 42, 71, 79lelttrd 10787 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) < 𝑈)
8169, 42, 51, 80, 64ltletrd 10789 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) < ((ℜ‘𝐴) / 2))
8267, 81eqbrtrrd 5087 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) − (ℜ‘𝑏)) < ((ℜ‘𝐴) / 2))
8350, 38, 51ltsubadd2d 11227 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) − (ℜ‘𝑏)) < ((ℜ‘𝐴) / 2) ↔ (ℜ‘𝐴) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2))))
8482, 83mpbid 233 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2)))
8566, 84eqbrtrd 5085 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2)))
8651, 38, 51ltadd1d 11222 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) < (ℜ‘𝑏) ↔ (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2))))
8785, 86mpbird 258 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) / 2) < (ℜ‘𝑏))
8842, 51, 38, 64, 87lelttrd 10787 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 < (ℜ‘𝑏))
8928rpred 12421 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℝ)
9052a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 1 ∈ ℝ)
9128rprege0d 12428 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎))
92 absid 14646 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘𝑎) = 𝑎)
94 simp3l 1195 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘𝑎) < 𝑇)
9593, 94eqbrtrrd 5087 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 𝑇)
9695, 1breqtrdi 5104 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))))
97 ltmin 12577 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐸𝑐(1 / 𝑈)) ∈ ℝ) → (𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈)))))
9889, 42, 75, 97syl3anc 1365 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈)))))
9996, 98mpbid 233 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈))))
10099simpld 495 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 𝑈)
101 rehalfcl 11852 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℝ → (1 / 2) ∈ ℝ)
10252, 101mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 2) ∈ ℝ)
103 min2 12573 . . . . . . . . . . . . . . . . . . . . 21 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1)
10450, 52, 103sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1)
105 lediv1 11494 . . . . . . . . . . . . . . . . . . . . 21 ((if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1 ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2)))
10656, 90, 58, 60, 105syl112anc 1368 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1 ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2)))
107104, 106mpbid 233 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2))
1082, 107eqbrtrid 5098 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ≤ (1 / 2))
109 halflt1 11844 . . . . . . . . . . . . . . . . . . 19 (1 / 2) < 1
110109a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 2) < 1)
11142, 102, 90, 108, 110lelttrd 10787 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 < 1)
11289, 42, 90, 100, 111lttrd 10790 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 1)
11328, 42, 112, 38cxplt3d 25230 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 < (ℜ‘𝑏) ↔ (𝑎𝑐(ℜ‘𝑏)) < (𝑎𝑐𝑈)))
11488, 113mpbid 233 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) < (𝑎𝑐𝑈))
11541rpcnne0d 12430 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0))
116 recid 11301 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 · (1 / 𝑈)) = 1)
117115, 116syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 · (1 / 𝑈)) = 1)
118117oveq2d 7164 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(𝑈 · (1 / 𝑈))) = (𝑎𝑐1))
11941rpreccld 12431 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 𝑈) ∈ ℝ+)
120119rpcnd 12423 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 𝑈) ∈ ℂ)
12128, 42, 120cxpmuld 25232 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(𝑈 · (1 / 𝑈))) = ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)))
12228rpcnd 12423 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℂ)
123122cxp1d 25202 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐1) = 𝑎)
124118, 121, 1233eqtr3d 2869 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) = 𝑎)
12599simprd 496 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < (𝐸𝑐(1 / 𝑈)))
126124, 125eqbrtrd 5085 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈)))
12743rprege0d 12428 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈) ∈ ℝ ∧ 0 ≤ (𝑎𝑐𝑈)))
12845rprege0d 12428 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸))
129 cxplt2 25194 . . . . . . . . . . . . . . . 16 ((((𝑎𝑐𝑈) ∈ ℝ ∧ 0 ≤ (𝑎𝑐𝑈)) ∧ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸) ∧ (1 / 𝑈) ∈ ℝ+) → ((𝑎𝑐𝑈) < 𝐸 ↔ ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈))))
130127, 128, 119, 129syl3anc 1365 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈) < 𝐸 ↔ ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈))))
131126, 130mpbird 258 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) < 𝐸)
13240, 44, 46, 114, 131lttrd 10790 . . . . . . . . . . . . 13 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) < 𝐸)
13337, 132eqbrtrd 5085 . . . . . . . . . . . 12 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝑎𝑐𝑏)) < 𝐸)
1341333expia 1115 . . . . . . . . . . 11 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷)) → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
135134anassrs 468 . . . . . . . . . 10 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ 𝑏𝐷) → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
136135ralrimiva 3187 . . . . . . . . 9 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
13727, 136sylan2br 594 . . . . . . . 8 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
138137expr 457 . . . . . . 7 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 < 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
139 elpreima 6824 . . . . . . . . . . . . . . . . . . 19 (ℜ Fn ℂ → (𝑏 ∈ (ℜ “ ℝ+) ↔ (𝑏 ∈ ℂ ∧ (ℜ‘𝑏) ∈ ℝ+)))
1405, 6, 139mp2b 10 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (ℜ “ ℝ+) ↔ (𝑏 ∈ ℂ ∧ (ℜ‘𝑏) ∈ ℝ+))
141140simprbi 497 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (ℜ “ ℝ+) → (ℜ‘𝑏) ∈ ℝ+)
142141, 3eleq2s 2936 . . . . . . . . . . . . . . . 16 (𝑏𝐷 → (ℜ‘𝑏) ∈ ℝ+)
143142rpne0d 12426 . . . . . . . . . . . . . . 15 (𝑏𝐷 → (ℜ‘𝑏) ≠ 0)
144 fveq2 6667 . . . . . . . . . . . . . . . . 17 (𝑏 = 0 → (ℜ‘𝑏) = (ℜ‘0))
145 re0 14501 . . . . . . . . . . . . . . . . 17 (ℜ‘0) = 0
146144, 145syl6eq 2877 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → (ℜ‘𝑏) = 0)
147146necon3i 3053 . . . . . . . . . . . . . . 15 ((ℜ‘𝑏) ≠ 0 → 𝑏 ≠ 0)
148143, 147syl 17 . . . . . . . . . . . . . 14 (𝑏𝐷𝑏 ≠ 0)
14934, 1480cxpd 25206 . . . . . . . . . . . . 13 (𝑏𝐷 → (0↑𝑐𝑏) = 0)
150149adantl 482 . . . . . . . . . . . 12 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0↑𝑐𝑏) = 0)
151150abs00bd 14641 . . . . . . . . . . 11 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (abs‘(0↑𝑐𝑏)) = 0)
152 simpllr 772 . . . . . . . . . . . 12 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → 𝐸 ∈ ℝ+)
153152rpgt0d 12424 . . . . . . . . . . 11 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → 0 < 𝐸)
154151, 153eqbrtrd 5085 . . . . . . . . . 10 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (abs‘(0↑𝑐𝑏)) < 𝐸)
155 fvoveq1 7171 . . . . . . . . . . 11 (0 = 𝑎 → (abs‘(0↑𝑐𝑏)) = (abs‘(𝑎𝑐𝑏)))
156155breq1d 5073 . . . . . . . . . 10 (0 = 𝑎 → ((abs‘(0↑𝑐𝑏)) < 𝐸 ↔ (abs‘(𝑎𝑐𝑏)) < 𝐸))
157154, 156syl5ibcom 246 . . . . . . . . 9 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0 = 𝑎 → (abs‘(𝑎𝑐𝑏)) < 𝐸))
158157a1dd 50 . . . . . . . 8 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0 = 𝑎 → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
159158ralrimdva 3194 . . . . . . 7 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 = 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
160138, 159jaod 855 . . . . . 6 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → ((0 < 𝑎 ∨ 0 = 𝑎) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
16126, 160sylbid 241 . . . . 5 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
162161expimpd 454 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
16323, 162syl5bi 243 . . 3 ((𝐴𝐷𝐸 ∈ ℝ+) → (𝑎 ∈ (0[,)+∞) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
164163ralrimiv 3186 . 2 ((𝐴𝐷𝐸 ∈ ℝ+) → ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
165 breq2 5067 . . . . . 6 (𝑑 = 𝑇 → ((abs‘𝑎) < 𝑑 ↔ (abs‘𝑎) < 𝑇))
166 breq2 5067 . . . . . 6 (𝑑 = 𝑇 → ((abs‘(𝐴𝑏)) < 𝑑 ↔ (abs‘(𝐴𝑏)) < 𝑇))
167165, 166anbi12d 630 . . . . 5 (𝑑 = 𝑇 → (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) ↔ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)))
168167imbi1d 343 . . . 4 (𝑑 = 𝑇 → ((((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸) ↔ (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
1691682ralbidv 3204 . . 3 (𝑑 = 𝑇 → (∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸) ↔ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
170169rspcev 3627 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
17122, 164, 170syl2anc 584 1 ((𝐴𝐷𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  wrex 3144  ifcif 4470   class class class wbr 5063  ccnv 5553  dom cdm 5554  cima 5557   Fn wfn 6347  wf 6348  cfv 6352  (class class class)co 7148  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11681  +crp 12379  [,)cico 12730  cre 14446  abscabs 14583  t crest 16684  TopOpenctopn 16685  fldccnfld 20461  𝑐ccxp 25052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-pi 15416  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-mulg 18155  df-cntz 18377  df-cmn 18828  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-fbas 20458  df-fg 20459  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-ntr 21544  df-cls 21545  df-nei 21622  df-lp 21660  df-perf 21661  df-cn 21751  df-cnp 21752  df-haus 21839  df-tx 22086  df-hmeo 22279  df-fil 22370  df-fm 22462  df-flim 22463  df-flf 22464  df-xms 22845  df-ms 22846  df-tms 22847  df-cncf 23401  df-limc 24379  df-dv 24380  df-log 25053  df-cxp 25054
This theorem is referenced by:  cxpcn3  25242
  Copyright terms: Public domain W3C validator