MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3lem Structured version   Visualization version   GIF version

Theorem cxpcn3lem 26714
Description: Lemma for cxpcn3 26715. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d 𝐷 = (ℜ “ ℝ+)
cxpcn3.j 𝐽 = (TopOpen‘ℂfld)
cxpcn3.k 𝐾 = (𝐽t (0[,)+∞))
cxpcn3.l 𝐿 = (𝐽t 𝐷)
cxpcn3.u 𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2)
cxpcn3.t 𝑇 = if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈)))
Assertion
Ref Expression
cxpcn3lem ((𝐴𝐷𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
Distinct variable groups:   𝑎,𝑏,𝑑,𝐴   𝐸,𝑎,𝑏,𝑑   𝐽,𝑑   𝐾,𝑎,𝑏,𝑑   𝐷,𝑎,𝑏,𝑑   𝐿,𝑎,𝑏,𝑑   𝑇,𝑎,𝑏,𝑑
Allowed substitution hints:   𝑈(𝑎,𝑏,𝑑)   𝐽(𝑎,𝑏)

Proof of Theorem cxpcn3lem
StepHypRef Expression
1 cxpcn3.t . . 3 𝑇 = if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈)))
2 cxpcn3.u . . . . 5 𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2)
3 cxpcn3.d . . . . . . . . . . 11 𝐷 = (ℜ “ ℝ+)
43eleq2i 2827 . . . . . . . . . 10 (𝐴𝐷𝐴 ∈ (ℜ “ ℝ+))
5 ref 15136 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
6 ffn 6711 . . . . . . . . . . 11 (ℜ:ℂ⟶ℝ → ℜ Fn ℂ)
7 elpreima 7053 . . . . . . . . . . 11 (ℜ Fn ℂ → (𝐴 ∈ (ℜ “ ℝ+) ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+)))
85, 6, 7mp2b 10 . . . . . . . . . 10 (𝐴 ∈ (ℜ “ ℝ+) ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+))
94, 8bitri 275 . . . . . . . . 9 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+))
109simprbi 496 . . . . . . . 8 (𝐴𝐷 → (ℜ‘𝐴) ∈ ℝ+)
1110adantr 480 . . . . . . 7 ((𝐴𝐷𝐸 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ+)
12 1rp 13017 . . . . . . 7 1 ∈ ℝ+
13 ifcl 4551 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ+ ∧ 1 ∈ ℝ+) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
1411, 12, 13sylancl 586 . . . . . 6 ((𝐴𝐷𝐸 ∈ ℝ+) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
1514rphalfcld 13068 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ∈ ℝ+)
162, 15eqeltrid 2839 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝑈 ∈ ℝ+)
17 simpr 484 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝐸 ∈ ℝ+)
1816rpreccld 13066 . . . . . 6 ((𝐴𝐷𝐸 ∈ ℝ+) → (1 / 𝑈) ∈ ℝ+)
1918rpred 13056 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → (1 / 𝑈) ∈ ℝ)
2017, 19rpcxpcld 26699 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ+)
2116, 20ifcld 4552 . . 3 ((𝐴𝐷𝐸 ∈ ℝ+) → if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ∈ ℝ+)
221, 21eqeltrid 2839 . 2 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝑇 ∈ ℝ+)
23 elrege0 13476 . . . 4 (𝑎 ∈ (0[,)+∞) ↔ (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎))
24 0red 11243 . . . . . . 7 ((𝐴𝐷𝐸 ∈ ℝ+) → 0 ∈ ℝ)
25 leloe 11326 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (0 < 𝑎 ∨ 0 = 𝑎)))
2624, 25sylan 580 . . . . . 6 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (0 < 𝑎 ∨ 0 = 𝑎)))
27 elrp 13015 . . . . . . . . 9 (𝑎 ∈ ℝ+ ↔ (𝑎 ∈ ℝ ∧ 0 < 𝑎))
28 simp2l 1200 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℝ+)
29 simp2r 1201 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑏𝐷)
30 cnvimass 6074 . . . . . . . . . . . . . . . . . 18 (ℜ “ ℝ+) ⊆ dom ℜ
315fdmi 6722 . . . . . . . . . . . . . . . . . 18 dom ℜ = ℂ
3230, 31sseqtri 4012 . . . . . . . . . . . . . . . . 17 (ℜ “ ℝ+) ⊆ ℂ
333, 32eqsstri 4010 . . . . . . . . . . . . . . . 16 𝐷 ⊆ ℂ
3433sseli 3959 . . . . . . . . . . . . . . 15 (𝑏𝐷𝑏 ∈ ℂ)
3529, 34syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑏 ∈ ℂ)
36 abscxp 26658 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ) → (abs‘(𝑎𝑐𝑏)) = (𝑎𝑐(ℜ‘𝑏)))
3728, 35, 36syl2anc 584 . . . . . . . . . . . . 13 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝑎𝑐𝑏)) = (𝑎𝑐(ℜ‘𝑏)))
3835recld 15218 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝑏) ∈ ℝ)
3928, 38rpcxpcld 26699 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) ∈ ℝ+)
4039rpred 13056 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) ∈ ℝ)
41163ad2ant1 1133 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ∈ ℝ+)
4241rpred 13056 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ∈ ℝ)
4328, 42rpcxpcld 26699 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) ∈ ℝ+)
4443rpred 13056 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) ∈ ℝ)
45 simp1r 1199 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐸 ∈ ℝ+)
4645rpred 13056 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐸 ∈ ℝ)
47 simp1l 1198 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐴𝐷)
489simplbi 497 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐷𝐴 ∈ ℂ)
4947, 48syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐴 ∈ ℂ)
5049recld 15218 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) ∈ ℝ)
5150rehalfcld 12493 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) / 2) ∈ ℝ)
52 1re 11240 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
53 min1 13210 . . . . . . . . . . . . . . . . . . 19 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴))
5450, 52, 53sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴))
55143ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
5655rpred 13056 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ)
57 2re 12319 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
5857a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 2 ∈ ℝ)
59 2pos 12348 . . . . . . . . . . . . . . . . . . . 20 0 < 2
6059a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 0 < 2)
61 lediv1 12112 . . . . . . . . . . . . . . . . . . 19 ((if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴) ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2)))
6256, 50, 58, 60, 61syl112anc 1376 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴) ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2)))
6354, 62mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2))
642, 63eqbrtrid 5159 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ≤ ((ℜ‘𝐴) / 2))
6550recnd 11268 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) ∈ ℂ)
66652halvesd 12492 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) = (ℜ‘𝐴))
6749, 35resubd 15240 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) = ((ℜ‘𝐴) − (ℜ‘𝑏)))
6849, 35subcld 11599 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐴𝑏) ∈ ℂ)
6968recld 15218 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) ∈ ℝ)
7068abscld 15460 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) ∈ ℝ)
7168releabsd 15475 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) ≤ (abs‘(𝐴𝑏)))
72 simp3r 1203 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < 𝑇)
7372, 1breqtrdi 5165 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))))
74203ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ+)
7574rpred 13056 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ)
76 ltmin 13215 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((abs‘(𝐴𝑏)) ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐸𝑐(1 / 𝑈)) ∈ ℝ) → ((abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈)))))
7770, 42, 75, 76syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈)))))
7873, 77mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈))))
7978simpld 494 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < 𝑈)
8069, 70, 42, 71, 79lelttrd 11398 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) < 𝑈)
8169, 42, 51, 80, 64ltletrd 11400 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) < ((ℜ‘𝐴) / 2))
8267, 81eqbrtrrd 5148 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) − (ℜ‘𝑏)) < ((ℜ‘𝐴) / 2))
8350, 38, 51ltsubadd2d 11840 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) − (ℜ‘𝑏)) < ((ℜ‘𝐴) / 2) ↔ (ℜ‘𝐴) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2))))
8482, 83mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2)))
8566, 84eqbrtrd 5146 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2)))
8651, 38, 51ltadd1d 11835 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) < (ℜ‘𝑏) ↔ (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2))))
8785, 86mpbird 257 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) / 2) < (ℜ‘𝑏))
8842, 51, 38, 64, 87lelttrd 11398 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 < (ℜ‘𝑏))
8928rpred 13056 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℝ)
9052a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 1 ∈ ℝ)
9128rprege0d 13063 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎))
92 absid 15320 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘𝑎) = 𝑎)
94 simp3l 1202 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘𝑎) < 𝑇)
9593, 94eqbrtrrd 5148 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 𝑇)
9695, 1breqtrdi 5165 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))))
97 ltmin 13215 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐸𝑐(1 / 𝑈)) ∈ ℝ) → (𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈)))))
9889, 42, 75, 97syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈)))))
9996, 98mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈))))
10099simpld 494 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 𝑈)
101 rehalfcl 12473 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℝ → (1 / 2) ∈ ℝ)
10252, 101mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 2) ∈ ℝ)
103 min2 13211 . . . . . . . . . . . . . . . . . . . . 21 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1)
10450, 52, 103sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1)
105 lediv1 12112 . . . . . . . . . . . . . . . . . . . . 21 ((if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1 ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2)))
10656, 90, 58, 60, 105syl112anc 1376 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1 ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2)))
107104, 106mpbid 232 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2))
1082, 107eqbrtrid 5159 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ≤ (1 / 2))
109 halflt1 12463 . . . . . . . . . . . . . . . . . . 19 (1 / 2) < 1
110109a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 2) < 1)
11142, 102, 90, 108, 110lelttrd 11398 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 < 1)
11289, 42, 90, 100, 111lttrd 11401 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 1)
11328, 42, 112, 38cxplt3d 26701 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 < (ℜ‘𝑏) ↔ (𝑎𝑐(ℜ‘𝑏)) < (𝑎𝑐𝑈)))
11488, 113mpbid 232 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) < (𝑎𝑐𝑈))
11541rpcnne0d 13065 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0))
116 recid 11915 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 · (1 / 𝑈)) = 1)
117115, 116syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 · (1 / 𝑈)) = 1)
118117oveq2d 7426 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(𝑈 · (1 / 𝑈))) = (𝑎𝑐1))
11941rpreccld 13066 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 𝑈) ∈ ℝ+)
120119rpcnd 13058 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 𝑈) ∈ ℂ)
12128, 42, 120cxpmuld 26703 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(𝑈 · (1 / 𝑈))) = ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)))
12228rpcnd 13058 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℂ)
123122cxp1d 26672 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐1) = 𝑎)
124118, 121, 1233eqtr3d 2779 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) = 𝑎)
12599simprd 495 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < (𝐸𝑐(1 / 𝑈)))
126124, 125eqbrtrd 5146 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈)))
12743rprege0d 13063 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈) ∈ ℝ ∧ 0 ≤ (𝑎𝑐𝑈)))
12845rprege0d 13063 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸))
129 cxplt2 26664 . . . . . . . . . . . . . . . 16 ((((𝑎𝑐𝑈) ∈ ℝ ∧ 0 ≤ (𝑎𝑐𝑈)) ∧ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸) ∧ (1 / 𝑈) ∈ ℝ+) → ((𝑎𝑐𝑈) < 𝐸 ↔ ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈))))
130127, 128, 119, 129syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈) < 𝐸 ↔ ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈))))
131126, 130mpbird 257 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) < 𝐸)
13240, 44, 46, 114, 131lttrd 11401 . . . . . . . . . . . . 13 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) < 𝐸)
13337, 132eqbrtrd 5146 . . . . . . . . . . . 12 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝑎𝑐𝑏)) < 𝐸)
1341333expia 1121 . . . . . . . . . . 11 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷)) → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
135134anassrs 467 . . . . . . . . . 10 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ 𝑏𝐷) → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
136135ralrimiva 3133 . . . . . . . . 9 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
13727, 136sylan2br 595 . . . . . . . 8 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
138137expr 456 . . . . . . 7 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 < 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
139 elpreima 7053 . . . . . . . . . . . . . . . . . . 19 (ℜ Fn ℂ → (𝑏 ∈ (ℜ “ ℝ+) ↔ (𝑏 ∈ ℂ ∧ (ℜ‘𝑏) ∈ ℝ+)))
1405, 6, 139mp2b 10 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (ℜ “ ℝ+) ↔ (𝑏 ∈ ℂ ∧ (ℜ‘𝑏) ∈ ℝ+))
141140simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (ℜ “ ℝ+) → (ℜ‘𝑏) ∈ ℝ+)
142141, 3eleq2s 2853 . . . . . . . . . . . . . . . 16 (𝑏𝐷 → (ℜ‘𝑏) ∈ ℝ+)
143142rpne0d 13061 . . . . . . . . . . . . . . 15 (𝑏𝐷 → (ℜ‘𝑏) ≠ 0)
144 fveq2 6881 . . . . . . . . . . . . . . . . 17 (𝑏 = 0 → (ℜ‘𝑏) = (ℜ‘0))
145 re0 15176 . . . . . . . . . . . . . . . . 17 (ℜ‘0) = 0
146144, 145eqtrdi 2787 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → (ℜ‘𝑏) = 0)
147146necon3i 2965 . . . . . . . . . . . . . . 15 ((ℜ‘𝑏) ≠ 0 → 𝑏 ≠ 0)
148143, 147syl 17 . . . . . . . . . . . . . 14 (𝑏𝐷𝑏 ≠ 0)
14934, 1480cxpd 26676 . . . . . . . . . . . . 13 (𝑏𝐷 → (0↑𝑐𝑏) = 0)
150149adantl 481 . . . . . . . . . . . 12 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0↑𝑐𝑏) = 0)
151150abs00bd 15315 . . . . . . . . . . 11 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (abs‘(0↑𝑐𝑏)) = 0)
152 simpllr 775 . . . . . . . . . . . 12 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → 𝐸 ∈ ℝ+)
153152rpgt0d 13059 . . . . . . . . . . 11 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → 0 < 𝐸)
154151, 153eqbrtrd 5146 . . . . . . . . . 10 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (abs‘(0↑𝑐𝑏)) < 𝐸)
155 fvoveq1 7433 . . . . . . . . . . 11 (0 = 𝑎 → (abs‘(0↑𝑐𝑏)) = (abs‘(𝑎𝑐𝑏)))
156155breq1d 5134 . . . . . . . . . 10 (0 = 𝑎 → ((abs‘(0↑𝑐𝑏)) < 𝐸 ↔ (abs‘(𝑎𝑐𝑏)) < 𝐸))
157154, 156syl5ibcom 245 . . . . . . . . 9 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0 = 𝑎 → (abs‘(𝑎𝑐𝑏)) < 𝐸))
158157a1dd 50 . . . . . . . 8 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0 = 𝑎 → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
159158ralrimdva 3141 . . . . . . 7 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 = 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
160138, 159jaod 859 . . . . . 6 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → ((0 < 𝑎 ∨ 0 = 𝑎) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
16126, 160sylbid 240 . . . . 5 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
162161expimpd 453 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
16323, 162biimtrid 242 . . 3 ((𝐴𝐷𝐸 ∈ ℝ+) → (𝑎 ∈ (0[,)+∞) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
164163ralrimiv 3132 . 2 ((𝐴𝐷𝐸 ∈ ℝ+) → ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
165 breq2 5128 . . . . . 6 (𝑑 = 𝑇 → ((abs‘𝑎) < 𝑑 ↔ (abs‘𝑎) < 𝑇))
166 breq2 5128 . . . . . 6 (𝑑 = 𝑇 → ((abs‘(𝐴𝑏)) < 𝑑 ↔ (abs‘(𝐴𝑏)) < 𝑇))
167165, 166anbi12d 632 . . . . 5 (𝑑 = 𝑇 → (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) ↔ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)))
168167imbi1d 341 . . . 4 (𝑑 = 𝑇 → ((((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸) ↔ (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
1691682ralbidv 3209 . . 3 (𝑑 = 𝑇 → (∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸) ↔ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
170169rspcev 3606 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
17122, 164, 170syl2anc 584 1 ((𝐴𝐷𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  ifcif 4505   class class class wbr 5124  ccnv 5658  dom cdm 5659  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  2c2 12300  +crp 13013  [,)cico 13369  cre 15121  abscabs 15258  t crest 17439  TopOpenctopn 17440  fldccnfld 21320  𝑐ccxp 26521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-cxp 26523
This theorem is referenced by:  cxpcn3  26715
  Copyright terms: Public domain W3C validator