MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3lem Structured version   Visualization version   GIF version

Theorem cxpcn3lem 25336
Description: Lemma for cxpcn3 25337. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d 𝐷 = (ℜ “ ℝ+)
cxpcn3.j 𝐽 = (TopOpen‘ℂfld)
cxpcn3.k 𝐾 = (𝐽t (0[,)+∞))
cxpcn3.l 𝐿 = (𝐽t 𝐷)
cxpcn3.u 𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2)
cxpcn3.t 𝑇 = if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈)))
Assertion
Ref Expression
cxpcn3lem ((𝐴𝐷𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
Distinct variable groups:   𝑎,𝑏,𝑑,𝐴   𝐸,𝑎,𝑏,𝑑   𝐽,𝑑   𝐾,𝑎,𝑏,𝑑   𝐷,𝑎,𝑏,𝑑   𝐿,𝑎,𝑏,𝑑   𝑇,𝑎,𝑏,𝑑
Allowed substitution hints:   𝑈(𝑎,𝑏,𝑑)   𝐽(𝑎,𝑏)

Proof of Theorem cxpcn3lem
StepHypRef Expression
1 cxpcn3.t . . 3 𝑇 = if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈)))
2 cxpcn3.u . . . . 5 𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2)
3 cxpcn3.d . . . . . . . . . . 11 𝐷 = (ℜ “ ℝ+)
43eleq2i 2881 . . . . . . . . . 10 (𝐴𝐷𝐴 ∈ (ℜ “ ℝ+))
5 ref 14463 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
6 ffn 6487 . . . . . . . . . . 11 (ℜ:ℂ⟶ℝ → ℜ Fn ℂ)
7 elpreima 6805 . . . . . . . . . . 11 (ℜ Fn ℂ → (𝐴 ∈ (ℜ “ ℝ+) ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+)))
85, 6, 7mp2b 10 . . . . . . . . . 10 (𝐴 ∈ (ℜ “ ℝ+) ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+))
94, 8bitri 278 . . . . . . . . 9 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+))
109simprbi 500 . . . . . . . 8 (𝐴𝐷 → (ℜ‘𝐴) ∈ ℝ+)
1110adantr 484 . . . . . . 7 ((𝐴𝐷𝐸 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ+)
12 1rp 12381 . . . . . . 7 1 ∈ ℝ+
13 ifcl 4469 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ+ ∧ 1 ∈ ℝ+) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
1411, 12, 13sylancl 589 . . . . . 6 ((𝐴𝐷𝐸 ∈ ℝ+) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
1514rphalfcld 12431 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ∈ ℝ+)
162, 15eqeltrid 2894 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝑈 ∈ ℝ+)
17 simpr 488 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝐸 ∈ ℝ+)
1816rpreccld 12429 . . . . . 6 ((𝐴𝐷𝐸 ∈ ℝ+) → (1 / 𝑈) ∈ ℝ+)
1918rpred 12419 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → (1 / 𝑈) ∈ ℝ)
2017, 19rpcxpcld 25323 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ+)
2116, 20ifcld 4470 . . 3 ((𝐴𝐷𝐸 ∈ ℝ+) → if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ∈ ℝ+)
221, 21eqeltrid 2894 . 2 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝑇 ∈ ℝ+)
23 elrege0 12832 . . . 4 (𝑎 ∈ (0[,)+∞) ↔ (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎))
24 0red 10633 . . . . . . 7 ((𝐴𝐷𝐸 ∈ ℝ+) → 0 ∈ ℝ)
25 leloe 10716 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (0 < 𝑎 ∨ 0 = 𝑎)))
2624, 25sylan 583 . . . . . 6 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (0 < 𝑎 ∨ 0 = 𝑎)))
27 elrp 12379 . . . . . . . . 9 (𝑎 ∈ ℝ+ ↔ (𝑎 ∈ ℝ ∧ 0 < 𝑎))
28 simp2l 1196 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℝ+)
29 simp2r 1197 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑏𝐷)
30 cnvimass 5916 . . . . . . . . . . . . . . . . . 18 (ℜ “ ℝ+) ⊆ dom ℜ
315fdmi 6498 . . . . . . . . . . . . . . . . . 18 dom ℜ = ℂ
3230, 31sseqtri 3951 . . . . . . . . . . . . . . . . 17 (ℜ “ ℝ+) ⊆ ℂ
333, 32eqsstri 3949 . . . . . . . . . . . . . . . 16 𝐷 ⊆ ℂ
3433sseli 3911 . . . . . . . . . . . . . . 15 (𝑏𝐷𝑏 ∈ ℂ)
3529, 34syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑏 ∈ ℂ)
36 abscxp 25283 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ) → (abs‘(𝑎𝑐𝑏)) = (𝑎𝑐(ℜ‘𝑏)))
3728, 35, 36syl2anc 587 . . . . . . . . . . . . 13 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝑎𝑐𝑏)) = (𝑎𝑐(ℜ‘𝑏)))
3835recld 14545 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝑏) ∈ ℝ)
3928, 38rpcxpcld 25323 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) ∈ ℝ+)
4039rpred 12419 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) ∈ ℝ)
41163ad2ant1 1130 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ∈ ℝ+)
4241rpred 12419 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ∈ ℝ)
4328, 42rpcxpcld 25323 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) ∈ ℝ+)
4443rpred 12419 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) ∈ ℝ)
45 simp1r 1195 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐸 ∈ ℝ+)
4645rpred 12419 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐸 ∈ ℝ)
47 simp1l 1194 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐴𝐷)
489simplbi 501 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐷𝐴 ∈ ℂ)
4947, 48syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐴 ∈ ℂ)
5049recld 14545 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) ∈ ℝ)
5150rehalfcld 11872 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) / 2) ∈ ℝ)
52 1re 10630 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
53 min1 12570 . . . . . . . . . . . . . . . . . . 19 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴))
5450, 52, 53sylancl 589 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴))
55143ad2ant1 1130 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
5655rpred 12419 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ)
57 2re 11699 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
5857a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 2 ∈ ℝ)
59 2pos 11728 . . . . . . . . . . . . . . . . . . . 20 0 < 2
6059a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 0 < 2)
61 lediv1 11494 . . . . . . . . . . . . . . . . . . 19 ((if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴) ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2)))
6256, 50, 58, 60, 61syl112anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴) ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2)))
6354, 62mpbid 235 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2))
642, 63eqbrtrid 5065 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ≤ ((ℜ‘𝐴) / 2))
6550recnd 10658 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) ∈ ℂ)
66652halvesd 11871 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) = (ℜ‘𝐴))
6749, 35resubd 14567 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) = ((ℜ‘𝐴) − (ℜ‘𝑏)))
6849, 35subcld 10986 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐴𝑏) ∈ ℂ)
6968recld 14545 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) ∈ ℝ)
7068abscld 14788 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) ∈ ℝ)
7168releabsd 14803 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) ≤ (abs‘(𝐴𝑏)))
72 simp3r 1199 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < 𝑇)
7372, 1breqtrdi 5071 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))))
74203ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ+)
7574rpred 12419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ)
76 ltmin 12575 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((abs‘(𝐴𝑏)) ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐸𝑐(1 / 𝑈)) ∈ ℝ) → ((abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈)))))
7770, 42, 75, 76syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈)))))
7873, 77mpbid 235 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈))))
7978simpld 498 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < 𝑈)
8069, 70, 42, 71, 79lelttrd 10787 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) < 𝑈)
8169, 42, 51, 80, 64ltletrd 10789 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) < ((ℜ‘𝐴) / 2))
8267, 81eqbrtrrd 5054 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) − (ℜ‘𝑏)) < ((ℜ‘𝐴) / 2))
8350, 38, 51ltsubadd2d 11227 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) − (ℜ‘𝑏)) < ((ℜ‘𝐴) / 2) ↔ (ℜ‘𝐴) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2))))
8482, 83mpbid 235 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2)))
8566, 84eqbrtrd 5052 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2)))
8651, 38, 51ltadd1d 11222 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) < (ℜ‘𝑏) ↔ (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2))))
8785, 86mpbird 260 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) / 2) < (ℜ‘𝑏))
8842, 51, 38, 64, 87lelttrd 10787 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 < (ℜ‘𝑏))
8928rpred 12419 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℝ)
9052a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 1 ∈ ℝ)
9128rprege0d 12426 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎))
92 absid 14648 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘𝑎) = 𝑎)
94 simp3l 1198 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘𝑎) < 𝑇)
9593, 94eqbrtrrd 5054 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 𝑇)
9695, 1breqtrdi 5071 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))))
97 ltmin 12575 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐸𝑐(1 / 𝑈)) ∈ ℝ) → (𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈)))))
9889, 42, 75, 97syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈)))))
9996, 98mpbid 235 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈))))
10099simpld 498 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 𝑈)
101 rehalfcl 11851 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℝ → (1 / 2) ∈ ℝ)
10252, 101mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 2) ∈ ℝ)
103 min2 12571 . . . . . . . . . . . . . . . . . . . . 21 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1)
10450, 52, 103sylancl 589 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1)
105 lediv1 11494 . . . . . . . . . . . . . . . . . . . . 21 ((if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1 ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2)))
10656, 90, 58, 60, 105syl112anc 1371 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1 ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2)))
107104, 106mpbid 235 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2))
1082, 107eqbrtrid 5065 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ≤ (1 / 2))
109 halflt1 11843 . . . . . . . . . . . . . . . . . . 19 (1 / 2) < 1
110109a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 2) < 1)
11142, 102, 90, 108, 110lelttrd 10787 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 < 1)
11289, 42, 90, 100, 111lttrd 10790 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 1)
11328, 42, 112, 38cxplt3d 25325 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 < (ℜ‘𝑏) ↔ (𝑎𝑐(ℜ‘𝑏)) < (𝑎𝑐𝑈)))
11488, 113mpbid 235 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) < (𝑎𝑐𝑈))
11541rpcnne0d 12428 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0))
116 recid 11301 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 · (1 / 𝑈)) = 1)
117115, 116syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 · (1 / 𝑈)) = 1)
118117oveq2d 7151 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(𝑈 · (1 / 𝑈))) = (𝑎𝑐1))
11941rpreccld 12429 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 𝑈) ∈ ℝ+)
120119rpcnd 12421 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 𝑈) ∈ ℂ)
12128, 42, 120cxpmuld 25327 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(𝑈 · (1 / 𝑈))) = ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)))
12228rpcnd 12421 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℂ)
123122cxp1d 25297 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐1) = 𝑎)
124118, 121, 1233eqtr3d 2841 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) = 𝑎)
12599simprd 499 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < (𝐸𝑐(1 / 𝑈)))
126124, 125eqbrtrd 5052 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈)))
12743rprege0d 12426 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈) ∈ ℝ ∧ 0 ≤ (𝑎𝑐𝑈)))
12845rprege0d 12426 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸))
129 cxplt2 25289 . . . . . . . . . . . . . . . 16 ((((𝑎𝑐𝑈) ∈ ℝ ∧ 0 ≤ (𝑎𝑐𝑈)) ∧ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸) ∧ (1 / 𝑈) ∈ ℝ+) → ((𝑎𝑐𝑈) < 𝐸 ↔ ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈))))
130127, 128, 119, 129syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈) < 𝐸 ↔ ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈))))
131126, 130mpbird 260 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) < 𝐸)
13240, 44, 46, 114, 131lttrd 10790 . . . . . . . . . . . . 13 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) < 𝐸)
13337, 132eqbrtrd 5052 . . . . . . . . . . . 12 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝑎𝑐𝑏)) < 𝐸)
1341333expia 1118 . . . . . . . . . . 11 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷)) → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
135134anassrs 471 . . . . . . . . . 10 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ 𝑏𝐷) → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
136135ralrimiva 3149 . . . . . . . . 9 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
13727, 136sylan2br 597 . . . . . . . 8 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
138137expr 460 . . . . . . 7 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 < 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
139 elpreima 6805 . . . . . . . . . . . . . . . . . . 19 (ℜ Fn ℂ → (𝑏 ∈ (ℜ “ ℝ+) ↔ (𝑏 ∈ ℂ ∧ (ℜ‘𝑏) ∈ ℝ+)))
1405, 6, 139mp2b 10 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (ℜ “ ℝ+) ↔ (𝑏 ∈ ℂ ∧ (ℜ‘𝑏) ∈ ℝ+))
141140simprbi 500 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (ℜ “ ℝ+) → (ℜ‘𝑏) ∈ ℝ+)
142141, 3eleq2s 2908 . . . . . . . . . . . . . . . 16 (𝑏𝐷 → (ℜ‘𝑏) ∈ ℝ+)
143142rpne0d 12424 . . . . . . . . . . . . . . 15 (𝑏𝐷 → (ℜ‘𝑏) ≠ 0)
144 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝑏 = 0 → (ℜ‘𝑏) = (ℜ‘0))
145 re0 14503 . . . . . . . . . . . . . . . . 17 (ℜ‘0) = 0
146144, 145eqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → (ℜ‘𝑏) = 0)
147146necon3i 3019 . . . . . . . . . . . . . . 15 ((ℜ‘𝑏) ≠ 0 → 𝑏 ≠ 0)
148143, 147syl 17 . . . . . . . . . . . . . 14 (𝑏𝐷𝑏 ≠ 0)
14934, 1480cxpd 25301 . . . . . . . . . . . . 13 (𝑏𝐷 → (0↑𝑐𝑏) = 0)
150149adantl 485 . . . . . . . . . . . 12 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0↑𝑐𝑏) = 0)
151150abs00bd 14643 . . . . . . . . . . 11 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (abs‘(0↑𝑐𝑏)) = 0)
152 simpllr 775 . . . . . . . . . . . 12 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → 𝐸 ∈ ℝ+)
153152rpgt0d 12422 . . . . . . . . . . 11 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → 0 < 𝐸)
154151, 153eqbrtrd 5052 . . . . . . . . . 10 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (abs‘(0↑𝑐𝑏)) < 𝐸)
155 fvoveq1 7158 . . . . . . . . . . 11 (0 = 𝑎 → (abs‘(0↑𝑐𝑏)) = (abs‘(𝑎𝑐𝑏)))
156155breq1d 5040 . . . . . . . . . 10 (0 = 𝑎 → ((abs‘(0↑𝑐𝑏)) < 𝐸 ↔ (abs‘(𝑎𝑐𝑏)) < 𝐸))
157154, 156syl5ibcom 248 . . . . . . . . 9 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0 = 𝑎 → (abs‘(𝑎𝑐𝑏)) < 𝐸))
158157a1dd 50 . . . . . . . 8 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0 = 𝑎 → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
159158ralrimdva 3154 . . . . . . 7 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 = 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
160138, 159jaod 856 . . . . . 6 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → ((0 < 𝑎 ∨ 0 = 𝑎) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
16126, 160sylbid 243 . . . . 5 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
162161expimpd 457 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
16323, 162syl5bi 245 . . 3 ((𝐴𝐷𝐸 ∈ ℝ+) → (𝑎 ∈ (0[,)+∞) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
164163ralrimiv 3148 . 2 ((𝐴𝐷𝐸 ∈ ℝ+) → ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
165 breq2 5034 . . . . . 6 (𝑑 = 𝑇 → ((abs‘𝑎) < 𝑑 ↔ (abs‘𝑎) < 𝑇))
166 breq2 5034 . . . . . 6 (𝑑 = 𝑇 → ((abs‘(𝐴𝑏)) < 𝑑 ↔ (abs‘(𝐴𝑏)) < 𝑇))
167165, 166anbi12d 633 . . . . 5 (𝑑 = 𝑇 → (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) ↔ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)))
168167imbi1d 345 . . . 4 (𝑑 = 𝑇 → ((((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸) ↔ (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
1691682ralbidv 3164 . . 3 (𝑑 = 𝑇 → (∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸) ↔ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
170169rspcev 3571 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
17122, 164, 170syl2anc 587 1 ((𝐴𝐷𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  ifcif 4425   class class class wbr 5030  ccnv 5518  dom cdm 5519  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  +crp 12377  [,)cico 12728  cre 14448  abscabs 14585  t crest 16686  TopOpenctopn 16687  fldccnfld 20091  𝑐ccxp 25147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149
This theorem is referenced by:  cxpcn3  25337
  Copyright terms: Public domain W3C validator