MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpaddle Structured version   Visualization version   GIF version

Theorem cxpaddle 25341
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
cxpaddle.1 (𝜑𝐴 ∈ ℝ)
cxpaddle.2 (𝜑 → 0 ≤ 𝐴)
cxpaddle.3 (𝜑𝐵 ∈ ℝ)
cxpaddle.4 (𝜑 → 0 ≤ 𝐵)
cxpaddle.5 (𝜑𝐶 ∈ ℝ+)
cxpaddle.6 (𝜑𝐶 ≤ 1)
Assertion
Ref Expression
cxpaddle (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))

Proof of Theorem cxpaddle
StepHypRef Expression
1 cxpaddle.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2 cxpaddle.3 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 10659 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 cxpaddle.2 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
5 cxpaddle.4 . . . . . . . 8 (𝜑 → 0 ≤ 𝐵)
61, 2, 4, 5addge0d 11205 . . . . . . 7 (𝜑 → 0 ≤ (𝐴 + 𝐵))
7 cxpaddle.5 . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
87rpred 12419 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
93, 6, 8recxpcld 25314 . . . . . 6 (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ)
109adantr 484 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ)
1110recnd 10658 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℂ)
1211mulid2d 10648 . . 3 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (1 · ((𝐴 + 𝐵)↑𝑐𝐶)) = ((𝐴 + 𝐵)↑𝑐𝐶))
131adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ∈ ℝ)
143anim1i 617 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵)))
15 elrp 12379 . . . . . . . 8 ((𝐴 + 𝐵) ∈ ℝ+ ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵)))
1614, 15sylibr 237 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℝ+)
1713, 16rerpdivcld 12450 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ∈ ℝ)
182adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ∈ ℝ)
1918, 16rerpdivcld 12450 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ∈ ℝ)
204adantr 484 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ 𝐴)
213adantr 484 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℝ)
22 simpr 488 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 < (𝐴 + 𝐵))
23 divge0 11498 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → 0 ≤ (𝐴 / (𝐴 + 𝐵)))
2413, 20, 21, 22, 23syl22anc 837 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ (𝐴 / (𝐴 + 𝐵)))
258adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℝ)
2617, 24, 25recxpcld 25314 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) ∈ ℝ)
275adantr 484 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ 𝐵)
28 divge0 11498 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → 0 ≤ (𝐵 / (𝐴 + 𝐵)))
2918, 27, 21, 22, 28syl22anc 837 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ (𝐵 / (𝐴 + 𝐵)))
3019, 29, 25recxpcld 25314 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶) ∈ ℝ)
311, 2addge01d 11217 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
325, 31mpbid 235 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + 𝐵))
3332adantr 484 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ≤ (𝐴 + 𝐵))
3421recnd 10658 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℂ)
3534mulid1d 10647 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) · 1) = (𝐴 + 𝐵))
3633, 35breqtrrd 5058 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ≤ ((𝐴 + 𝐵) · 1))
37 1red 10631 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 1 ∈ ℝ)
38 ledivmul 11505 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → ((𝐴 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐴 ≤ ((𝐴 + 𝐵) · 1)))
3913, 37, 21, 22, 38syl112anc 1371 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐴 ≤ ((𝐴 + 𝐵) · 1)))
4036, 39mpbird 260 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ≤ 1)
417adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℝ+)
42 cxpaddle.6 . . . . . . . 8 (𝜑𝐶 ≤ 1)
4342adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ≤ 1)
4417, 24, 40, 41, 43cxpaddlelem 25340 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ≤ ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶))
452, 1addge02d 11218 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
464, 45mpbid 235 . . . . . . . . . 10 (𝜑𝐵 ≤ (𝐴 + 𝐵))
4746adantr 484 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ≤ (𝐴 + 𝐵))
4847, 35breqtrrd 5058 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ≤ ((𝐴 + 𝐵) · 1))
49 ledivmul 11505 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → ((𝐵 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐵 ≤ ((𝐴 + 𝐵) · 1)))
5018, 37, 21, 22, 49syl112anc 1371 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐵 ≤ ((𝐴 + 𝐵) · 1)))
5148, 50mpbird 260 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ≤ 1)
5219, 29, 51, 41, 43cxpaddlelem 25340 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ≤ ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶))
5317, 19, 26, 30, 44, 52le2addd 11248 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))) ≤ (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)))
5413recnd 10658 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ∈ ℂ)
5518recnd 10658 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ∈ ℂ)
5616rpne0d 12424 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ≠ 0)
5754, 55, 34, 56divdird 11443 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) / (𝐴 + 𝐵)) = ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))))
5834, 56dividd 11403 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) / (𝐴 + 𝐵)) = 1)
5957, 58eqtr3d 2835 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))) = 1)
608recnd 10658 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
6160adantr 484 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℂ)
6213, 20, 16, 61divcxpd 25313 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) = ((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)))
6318, 27, 16, 61divcxpd 25313 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶) = ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)))
6462, 63oveq12d 7153 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)) = (((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)) + ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶))))
651, 4, 8recxpcld 25314 . . . . . . . . 9 (𝜑 → (𝐴𝑐𝐶) ∈ ℝ)
6665recnd 10658 . . . . . . . 8 (𝜑 → (𝐴𝑐𝐶) ∈ ℂ)
6766adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴𝑐𝐶) ∈ ℂ)
682, 5, 8recxpcld 25314 . . . . . . . . 9 (𝜑 → (𝐵𝑐𝐶) ∈ ℝ)
6968recnd 10658 . . . . . . . 8 (𝜑 → (𝐵𝑐𝐶) ∈ ℂ)
7069adantr 484 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵𝑐𝐶) ∈ ℂ)
7116, 25rpcxpcld 25323 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ+)
7271rpne0d 12424 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≠ 0)
7367, 70, 11, 72divdird 11443 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)) = (((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)) + ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶))))
7464, 73eqtr4d 2836 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)) = (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)))
7553, 59, 743brtr3d 5061 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 1 ≤ (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)))
7665, 68readdcld 10659 . . . . . 6 (𝜑 → ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ∈ ℝ)
7776adantr 484 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ∈ ℝ)
7837, 77, 71lemuldivd 12468 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((1 · ((𝐴 + 𝐵)↑𝑐𝐶)) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ↔ 1 ≤ (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶))))
7975, 78mpbird 260 . . 3 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (1 · ((𝐴 + 𝐵)↑𝑐𝐶)) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
8012, 79eqbrtrrd 5054 . 2 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
817rpne0d 12424 . . . . . 6 (𝜑𝐶 ≠ 0)
8260, 810cxpd 25301 . . . . 5 (𝜑 → (0↑𝑐𝐶) = 0)
831, 4, 8cxpge0d 25315 . . . . . 6 (𝜑 → 0 ≤ (𝐴𝑐𝐶))
842, 5, 8cxpge0d 25315 . . . . . 6 (𝜑 → 0 ≤ (𝐵𝑐𝐶))
8565, 68, 83, 84addge0d 11205 . . . . 5 (𝜑 → 0 ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
8682, 85eqbrtrd 5052 . . . 4 (𝜑 → (0↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
87 oveq1 7142 . . . . 5 (0 = (𝐴 + 𝐵) → (0↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝑐𝐶))
8887breq1d 5040 . . . 4 (0 = (𝐴 + 𝐵) → ((0↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ↔ ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶))))
8986, 88syl5ibcom 248 . . 3 (𝜑 → (0 = (𝐴 + 𝐵) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶))))
9089imp 410 . 2 ((𝜑 ∧ 0 = (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
91 0re 10632 . . . 4 0 ∈ ℝ
92 leloe 10716 . . . 4 ((0 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (0 ≤ (𝐴 + 𝐵) ↔ (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵))))
9391, 3, 92sylancr 590 . . 3 (𝜑 → (0 ≤ (𝐴 + 𝐵) ↔ (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵))))
946, 93mpbid 235 . 2 (𝜑 → (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵)))
9580, 90, 94mpjaodan 956 1 (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111   class class class wbr 5030  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665   / cdiv 11286  +crp 12377  𝑐ccxp 25147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149
This theorem is referenced by:  abvcxp  26199
  Copyright terms: Public domain W3C validator