Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpaddle Structured version   Visualization version   GIF version

 Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
cxpaddle.2 (𝜑 → 0 ≤ 𝐴)
cxpaddle.4 (𝜑 → 0 ≤ 𝐵)
Assertion
Ref Expression
cxpaddle (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))

StepHypRef Expression
1 cxpaddle.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2 cxpaddle.3 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 10408 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 cxpaddle.2 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
5 cxpaddle.4 . . . . . . . 8 (𝜑 → 0 ≤ 𝐵)
61, 2, 4, 5addge0d 10953 . . . . . . 7 (𝜑 → 0 ≤ (𝐴 + 𝐵))
7 cxpaddle.5 . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
87rpred 12185 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
93, 6, 8recxpcld 24910 . . . . . 6 (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ)
109adantr 474 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ)
1110recnd 10407 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℂ)
1211mulid2d 10397 . . 3 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (1 · ((𝐴 + 𝐵)↑𝑐𝐶)) = ((𝐴 + 𝐵)↑𝑐𝐶))
131adantr 474 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ∈ ℝ)
143anim1i 608 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵)))
15 elrp 12143 . . . . . . . 8 ((𝐴 + 𝐵) ∈ ℝ+ ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵)))
1614, 15sylibr 226 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℝ+)
1713, 16rerpdivcld 12216 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ∈ ℝ)
182adantr 474 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ∈ ℝ)
1918, 16rerpdivcld 12216 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ∈ ℝ)
204adantr 474 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ 𝐴)
213adantr 474 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℝ)
22 simpr 479 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 < (𝐴 + 𝐵))
23 divge0 11248 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → 0 ≤ (𝐴 / (𝐴 + 𝐵)))
2413, 20, 21, 22, 23syl22anc 829 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ (𝐴 / (𝐴 + 𝐵)))
258adantr 474 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℝ)
2617, 24, 25recxpcld 24910 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) ∈ ℝ)
275adantr 474 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ 𝐵)
28 divge0 11248 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → 0 ≤ (𝐵 / (𝐴 + 𝐵)))
2918, 27, 21, 22, 28syl22anc 829 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ (𝐵 / (𝐴 + 𝐵)))
3019, 29, 25recxpcld 24910 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶) ∈ ℝ)
311, 2addge01d 10965 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
325, 31mpbid 224 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + 𝐵))
3332adantr 474 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ≤ (𝐴 + 𝐵))
3421recnd 10407 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℂ)
3534mulid1d 10396 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) · 1) = (𝐴 + 𝐵))
3633, 35breqtrrd 4916 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ≤ ((𝐴 + 𝐵) · 1))
37 1red 10379 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 1 ∈ ℝ)
38 ledivmul 11255 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → ((𝐴 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐴 ≤ ((𝐴 + 𝐵) · 1)))
3913, 37, 21, 22, 38syl112anc 1442 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐴 ≤ ((𝐴 + 𝐵) · 1)))
4036, 39mpbird 249 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ≤ 1)
417adantr 474 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℝ+)
42 cxpaddle.6 . . . . . . . 8 (𝜑𝐶 ≤ 1)
4342adantr 474 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ≤ 1)
4417, 24, 40, 41, 43cxpaddlelem 24936 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ≤ ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶))
452, 1addge02d 10966 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
464, 45mpbid 224 . . . . . . . . . 10 (𝜑𝐵 ≤ (𝐴 + 𝐵))
4746adantr 474 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ≤ (𝐴 + 𝐵))
4847, 35breqtrrd 4916 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ≤ ((𝐴 + 𝐵) · 1))
49 ledivmul 11255 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → ((𝐵 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐵 ≤ ((𝐴 + 𝐵) · 1)))
5018, 37, 21, 22, 49syl112anc 1442 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐵 ≤ ((𝐴 + 𝐵) · 1)))
5148, 50mpbird 249 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ≤ 1)
5219, 29, 51, 41, 43cxpaddlelem 24936 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ≤ ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶))
5317, 19, 26, 30, 44, 52le2addd 10996 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))) ≤ (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)))
5413recnd 10407 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ∈ ℂ)
5518recnd 10407 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ∈ ℂ)
5616rpne0d 12190 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ≠ 0)
5754, 55, 34, 56divdird 11191 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) / (𝐴 + 𝐵)) = ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))))
5834, 56dividd 11151 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) / (𝐴 + 𝐵)) = 1)
5957, 58eqtr3d 2816 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))) = 1)
608recnd 10407 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
6160adantr 474 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℂ)
6213, 20, 16, 61divcxpd 24909 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) = ((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)))
6318, 27, 16, 61divcxpd 24909 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶) = ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)))
6462, 63oveq12d 6942 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)) = (((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)) + ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶))))
651, 4, 8recxpcld 24910 . . . . . . . . 9 (𝜑 → (𝐴𝑐𝐶) ∈ ℝ)
6665recnd 10407 . . . . . . . 8 (𝜑 → (𝐴𝑐𝐶) ∈ ℂ)
6766adantr 474 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴𝑐𝐶) ∈ ℂ)
682, 5, 8recxpcld 24910 . . . . . . . . 9 (𝜑 → (𝐵𝑐𝐶) ∈ ℝ)
6968recnd 10407 . . . . . . . 8 (𝜑 → (𝐵𝑐𝐶) ∈ ℂ)
7069adantr 474 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵𝑐𝐶) ∈ ℂ)
7116, 25rpcxpcld 24919 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ+)
7271rpne0d 12190 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≠ 0)
7367, 70, 11, 72divdird 11191 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)) = (((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)) + ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶))))
7464, 73eqtr4d 2817 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)) = (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)))
7553, 59, 743brtr3d 4919 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 1 ≤ (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)))
7665, 68readdcld 10408 . . . . . 6 (𝜑 → ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ∈ ℝ)
7776adantr 474 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ∈ ℝ)
7837, 77, 71lemuldivd 12234 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((1 · ((𝐴 + 𝐵)↑𝑐𝐶)) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ↔ 1 ≤ (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶))))
7975, 78mpbird 249 . . 3 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (1 · ((𝐴 + 𝐵)↑𝑐𝐶)) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
8012, 79eqbrtrrd 4912 . 2 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
817rpne0d 12190 . . . . . 6 (𝜑𝐶 ≠ 0)
8260, 810cxpd 24897 . . . . 5 (𝜑 → (0↑𝑐𝐶) = 0)
831, 4, 8cxpge0d 24911 . . . . . 6 (𝜑 → 0 ≤ (𝐴𝑐𝐶))
842, 5, 8cxpge0d 24911 . . . . . 6 (𝜑 → 0 ≤ (𝐵𝑐𝐶))
8565, 68, 83, 84addge0d 10953 . . . . 5 (𝜑 → 0 ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
8682, 85eqbrtrd 4910 . . . 4 (𝜑 → (0↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
87 oveq1 6931 . . . . 5 (0 = (𝐴 + 𝐵) → (0↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝑐𝐶))
8887breq1d 4898 . . . 4 (0 = (𝐴 + 𝐵) → ((0↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ↔ ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶))))
8986, 88syl5ibcom 237 . . 3 (𝜑 → (0 = (𝐴 + 𝐵) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶))))
9089imp 397 . 2 ((𝜑 ∧ 0 = (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
91 0re 10380 . . . 4 0 ∈ ℝ
92 leloe 10465 . . . 4 ((0 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (0 ≤ (𝐴 + 𝐵) ↔ (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵))))
9391, 3, 92sylancr 581 . . 3 (𝜑 → (0 ≤ (𝐴 + 𝐵) ↔ (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵))))
946, 93mpbid 224 . 2 (𝜑 → (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵)))
9580, 90, 94mpjaodan 944 1 (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∨ wo 836   = wceq 1601   ∈ wcel 2107   class class class wbr 4888  (class class class)co 6924  ℂcc 10272  ℝcr 10273  0cc0 10274  1c1 10275   + caddc 10277   · cmul 10279   < clt 10413   ≤ cle 10414   / cdiv 11034  ℝ+crp 12141  ↑𝑐ccxp 24743 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-q 12100  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-ioo 12495  df-ioc 12496  df-ico 12497  df-icc 12498  df-fz 12648  df-fzo 12789  df-fl 12916  df-mod 12992  df-seq 13124  df-exp 13183  df-fac 13383  df-bc 13412  df-hash 13440  df-shft 14218  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-limsup 14614  df-clim 14631  df-rlim 14632  df-sum 14829  df-ef 15204  df-sin 15206  df-cos 15207  df-pi 15209  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-starv 16357  df-sca 16358  df-vsca 16359  df-ip 16360  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-hom 16366  df-cco 16367  df-rest 16473  df-topn 16474  df-0g 16492  df-gsum 16493  df-topgen 16494  df-pt 16495  df-prds 16498  df-xrs 16552  df-qtop 16557  df-imas 16558  df-xps 16560  df-mre 16636  df-mrc 16637  df-acs 16639  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-submnd 17726  df-mulg 17932  df-cntz 18137  df-cmn 18585  df-psmet 20138  df-xmet 20139  df-met 20140  df-bl 20141  df-mopn 20142  df-fbas 20143  df-fg 20144  df-cnfld 20147  df-top 21110  df-topon 21127  df-topsp 21149  df-bases 21162  df-cld 21235  df-ntr 21236  df-cls 21237  df-nei 21314  df-lp 21352  df-perf 21353  df-cn 21443  df-cnp 21444  df-haus 21531  df-tx 21778  df-hmeo 21971  df-fil 22062  df-fm 22154  df-flim 22155  df-flf 22156  df-xms 22537  df-ms 22538  df-tms 22539  df-cncf 23093  df-limc 24071  df-dv 24072  df-log 24744  df-cxp 24745 This theorem is referenced by:  abvcxp  25760
 Copyright terms: Public domain W3C validator