MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpaddle Structured version   Visualization version   GIF version

Theorem cxpaddle 26719
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
cxpaddle.1 (𝜑𝐴 ∈ ℝ)
cxpaddle.2 (𝜑 → 0 ≤ 𝐴)
cxpaddle.3 (𝜑𝐵 ∈ ℝ)
cxpaddle.4 (𝜑 → 0 ≤ 𝐵)
cxpaddle.5 (𝜑𝐶 ∈ ℝ+)
cxpaddle.6 (𝜑𝐶 ≤ 1)
Assertion
Ref Expression
cxpaddle (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))

Proof of Theorem cxpaddle
StepHypRef Expression
1 cxpaddle.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2 cxpaddle.3 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 11269 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 cxpaddle.2 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
5 cxpaddle.4 . . . . . . . 8 (𝜑 → 0 ≤ 𝐵)
61, 2, 4, 5addge0d 11818 . . . . . . 7 (𝜑 → 0 ≤ (𝐴 + 𝐵))
7 cxpaddle.5 . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
87rpred 13056 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
93, 6, 8recxpcld 26689 . . . . . 6 (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ)
109adantr 480 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ)
1110recnd 11268 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℂ)
1211mullidd 11258 . . 3 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (1 · ((𝐴 + 𝐵)↑𝑐𝐶)) = ((𝐴 + 𝐵)↑𝑐𝐶))
131adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ∈ ℝ)
143anim1i 615 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵)))
15 elrp 13015 . . . . . . . 8 ((𝐴 + 𝐵) ∈ ℝ+ ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵)))
1614, 15sylibr 234 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℝ+)
1713, 16rerpdivcld 13087 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ∈ ℝ)
182adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ∈ ℝ)
1918, 16rerpdivcld 13087 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ∈ ℝ)
204adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ 𝐴)
213adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℝ)
22 simpr 484 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 < (𝐴 + 𝐵))
23 divge0 12116 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → 0 ≤ (𝐴 / (𝐴 + 𝐵)))
2413, 20, 21, 22, 23syl22anc 838 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ (𝐴 / (𝐴 + 𝐵)))
258adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℝ)
2617, 24, 25recxpcld 26689 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) ∈ ℝ)
275adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ 𝐵)
28 divge0 12116 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → 0 ≤ (𝐵 / (𝐴 + 𝐵)))
2918, 27, 21, 22, 28syl22anc 838 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ (𝐵 / (𝐴 + 𝐵)))
3019, 29, 25recxpcld 26689 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶) ∈ ℝ)
311, 2addge01d 11830 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
325, 31mpbid 232 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + 𝐵))
3332adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ≤ (𝐴 + 𝐵))
3421recnd 11268 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℂ)
3534mulridd 11257 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) · 1) = (𝐴 + 𝐵))
3633, 35breqtrrd 5152 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ≤ ((𝐴 + 𝐵) · 1))
37 1red 11241 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 1 ∈ ℝ)
38 ledivmul 12123 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → ((𝐴 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐴 ≤ ((𝐴 + 𝐵) · 1)))
3913, 37, 21, 22, 38syl112anc 1376 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐴 ≤ ((𝐴 + 𝐵) · 1)))
4036, 39mpbird 257 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ≤ 1)
417adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℝ+)
42 cxpaddle.6 . . . . . . . 8 (𝜑𝐶 ≤ 1)
4342adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ≤ 1)
4417, 24, 40, 41, 43cxpaddlelem 26718 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ≤ ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶))
452, 1addge02d 11831 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
464, 45mpbid 232 . . . . . . . . . 10 (𝜑𝐵 ≤ (𝐴 + 𝐵))
4746adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ≤ (𝐴 + 𝐵))
4847, 35breqtrrd 5152 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ≤ ((𝐴 + 𝐵) · 1))
49 ledivmul 12123 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → ((𝐵 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐵 ≤ ((𝐴 + 𝐵) · 1)))
5018, 37, 21, 22, 49syl112anc 1376 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐵 ≤ ((𝐴 + 𝐵) · 1)))
5148, 50mpbird 257 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ≤ 1)
5219, 29, 51, 41, 43cxpaddlelem 26718 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ≤ ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶))
5317, 19, 26, 30, 44, 52le2addd 11861 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))) ≤ (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)))
5413recnd 11268 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ∈ ℂ)
5518recnd 11268 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ∈ ℂ)
5616rpne0d 13061 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ≠ 0)
5754, 55, 34, 56divdird 12060 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) / (𝐴 + 𝐵)) = ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))))
5834, 56dividd 12020 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) / (𝐴 + 𝐵)) = 1)
5957, 58eqtr3d 2773 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))) = 1)
608recnd 11268 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
6160adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℂ)
6213, 20, 16, 61divcxpd 26688 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) = ((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)))
6318, 27, 16, 61divcxpd 26688 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶) = ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)))
6462, 63oveq12d 7428 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)) = (((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)) + ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶))))
651, 4, 8recxpcld 26689 . . . . . . . . 9 (𝜑 → (𝐴𝑐𝐶) ∈ ℝ)
6665recnd 11268 . . . . . . . 8 (𝜑 → (𝐴𝑐𝐶) ∈ ℂ)
6766adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴𝑐𝐶) ∈ ℂ)
682, 5, 8recxpcld 26689 . . . . . . . . 9 (𝜑 → (𝐵𝑐𝐶) ∈ ℝ)
6968recnd 11268 . . . . . . . 8 (𝜑 → (𝐵𝑐𝐶) ∈ ℂ)
7069adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵𝑐𝐶) ∈ ℂ)
7116, 25rpcxpcld 26699 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ+)
7271rpne0d 13061 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≠ 0)
7367, 70, 11, 72divdird 12060 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)) = (((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)) + ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶))))
7464, 73eqtr4d 2774 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)) = (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)))
7553, 59, 743brtr3d 5155 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 1 ≤ (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)))
7665, 68readdcld 11269 . . . . . 6 (𝜑 → ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ∈ ℝ)
7776adantr 480 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ∈ ℝ)
7837, 77, 71lemuldivd 13105 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((1 · ((𝐴 + 𝐵)↑𝑐𝐶)) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ↔ 1 ≤ (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶))))
7975, 78mpbird 257 . . 3 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (1 · ((𝐴 + 𝐵)↑𝑐𝐶)) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
8012, 79eqbrtrrd 5148 . 2 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
817rpne0d 13061 . . . . . 6 (𝜑𝐶 ≠ 0)
8260, 810cxpd 26676 . . . . 5 (𝜑 → (0↑𝑐𝐶) = 0)
831, 4, 8cxpge0d 26690 . . . . . 6 (𝜑 → 0 ≤ (𝐴𝑐𝐶))
842, 5, 8cxpge0d 26690 . . . . . 6 (𝜑 → 0 ≤ (𝐵𝑐𝐶))
8565, 68, 83, 84addge0d 11818 . . . . 5 (𝜑 → 0 ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
8682, 85eqbrtrd 5146 . . . 4 (𝜑 → (0↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
87 oveq1 7417 . . . . 5 (0 = (𝐴 + 𝐵) → (0↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝑐𝐶))
8887breq1d 5134 . . . 4 (0 = (𝐴 + 𝐵) → ((0↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ↔ ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶))))
8986, 88syl5ibcom 245 . . 3 (𝜑 → (0 = (𝐴 + 𝐵) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶))))
9089imp 406 . 2 ((𝜑 ∧ 0 = (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
91 0re 11242 . . . 4 0 ∈ ℝ
92 leloe 11326 . . . 4 ((0 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (0 ≤ (𝐴 + 𝐵) ↔ (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵))))
9391, 3, 92sylancr 587 . . 3 (𝜑 → (0 ≤ (𝐴 + 𝐵) ↔ (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵))))
946, 93mpbid 232 . 2 (𝜑 → (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵)))
9580, 90, 94mpjaodan 960 1 (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5124  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275   / cdiv 11899  +crp 13013  𝑐ccxp 26521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-cxp 26523
This theorem is referenced by:  abvcxp  27583
  Copyright terms: Public domain W3C validator