MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgm Structured version   Visualization version   GIF version

Theorem amgm 27048
Description: Inequality of arithmetic and geometric means. Here (𝑀 Σg 𝐹) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements 𝐹(𝑥), 𝑥𝐴 together), and (ℂfld Σg 𝐹) calculates the group sum in the additive group (i.e. the sum of the elements). This is Metamath 100 proof #38. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
amgm.1 𝑀 = (mulGrp‘ℂfld)
Assertion
Ref Expression
amgm ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgm.1 . . . . . . . . 9 𝑀 = (mulGrp‘ℂfld)
2 cnfldbas 21385 . . . . . . . . 9 ℂ = (Base‘ℂfld)
31, 2mgpbas 20157 . . . . . . . 8 ℂ = (Base‘𝑀)
4 cnfld1 21423 . . . . . . . . 9 1 = (1r‘ℂfld)
51, 4ringidval 20200 . . . . . . . 8 1 = (0g𝑀)
6 cnfldmul 21389 . . . . . . . . 9 · = (.r‘ℂfld)
71, 6mgpplusg 20155 . . . . . . . 8 · = (+g𝑀)
8 cncrng 21418 . . . . . . . . 9 fld ∈ CRing
91crngmgp 20258 . . . . . . . . 9 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
108, 9mp1i 13 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑀 ∈ CMnd)
11 simpl1 1190 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 ∈ Fin)
12 simpl3 1192 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹:𝐴⟶(0[,)+∞))
13 rge0ssre 13492 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
14 ax-resscn 11209 . . . . . . . . . 10 ℝ ⊆ ℂ
1513, 14sstri 4004 . . . . . . . . 9 (0[,)+∞) ⊆ ℂ
16 fss 6752 . . . . . . . . 9 ((𝐹:𝐴⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
1712, 15, 16sylancl 586 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹:𝐴⟶ℂ)
18 1ex 11254 . . . . . . . . . 10 1 ∈ V
1918a1i 11 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 1 ∈ V)
2017, 11, 19fdmfifsupp 9412 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹 finSupp 1)
21 disjdif 4477 . . . . . . . . 9 ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅
2221a1i 11 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅)
23 undif2 4482 . . . . . . . . 9 ({𝑥} ∪ (𝐴 ∖ {𝑥})) = ({𝑥} ∪ 𝐴)
24 simprl 771 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑥𝐴)
2524snssd 4813 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → {𝑥} ⊆ 𝐴)
26 ssequn1 4195 . . . . . . . . . 10 ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ 𝐴) = 𝐴)
2725, 26sylib 218 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ({𝑥} ∪ 𝐴) = 𝐴)
2823, 27eqtr2id 2787 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 = ({𝑥} ∪ (𝐴 ∖ {𝑥})))
293, 5, 7, 10, 11, 17, 20, 22, 28gsumsplit 19960 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg 𝐹) = ((𝑀 Σg (𝐹 ↾ {𝑥})) · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))))
3012, 25feqresmpt 6977 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ {𝑥}) = (𝑦 ∈ {𝑥} ↦ (𝐹𝑦)))
3130oveq2d 7446 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ {𝑥})) = (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))))
32 cnring 21420 . . . . . . . . . . 11 fld ∈ Ring
331ringmgp 20256 . . . . . . . . . . 11 (ℂfld ∈ Ring → 𝑀 ∈ Mnd)
3432, 33mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑀 ∈ Mnd)
3517, 24ffvelcdmd 7104 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹𝑥) ∈ ℂ)
36 fveq2 6906 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
373, 36gsumsn 19986 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑥𝐴 ∧ (𝐹𝑥) ∈ ℂ) → (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))) = (𝐹𝑥))
3834, 24, 35, 37syl3anc 1370 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))) = (𝐹𝑥))
39 simprr 773 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹𝑥) = 0)
4031, 38, 393eqtrd 2778 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ {𝑥})) = 0)
4140oveq1d 7445 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg (𝐹 ↾ {𝑥})) · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))) = (0 · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))))
42 diffi 9213 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin)
4311, 42syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐴 ∖ {𝑥}) ∈ Fin)
44 difss 4145 . . . . . . . . . 10 (𝐴 ∖ {𝑥}) ⊆ 𝐴
45 fssres 6774 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝑥}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑥})):(𝐴 ∖ {𝑥})⟶ℂ)
4617, 44, 45sylancl 586 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ (𝐴 ∖ {𝑥})):(𝐴 ∖ {𝑥})⟶ℂ)
4746, 43, 19fdmfifsupp 9412 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ (𝐴 ∖ {𝑥})) finSupp 1)
483, 5, 10, 43, 46, 47gsumcl 19947 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥}))) ∈ ℂ)
4948mul02d 11456 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0 · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))) = 0)
5029, 41, 493eqtrd 2778 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg 𝐹) = 0)
5150oveq1d 7445 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (0↑𝑐(1 / (♯‘𝐴))))
52 simpl2 1191 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 ≠ ∅)
53 hashnncl 14401 . . . . . . . . . 10 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
5411, 53syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
5552, 54mpbird 257 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (♯‘𝐴) ∈ ℕ)
5655nncnd 12279 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (♯‘𝐴) ∈ ℂ)
5755nnne0d 12313 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (♯‘𝐴) ≠ 0)
5856, 57reccld 12033 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (1 / (♯‘𝐴)) ∈ ℂ)
5956, 57recne0d 12034 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (1 / (♯‘𝐴)) ≠ 0)
6058, 590cxpd 26766 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0↑𝑐(1 / (♯‘𝐴))) = 0)
6151, 60eqtrd 2774 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = 0)
62 cnfld0 21422 . . . . . . 7 0 = (0g‘ℂfld)
63 ringcmn 20295 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
6432, 63mp1i 13 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ℂfld ∈ CMnd)
65 rege0subm 21458 . . . . . . . 8 (0[,)+∞) ∈ (SubMnd‘ℂfld)
6665a1i 11 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0[,)+∞) ∈ (SubMnd‘ℂfld))
67 c0ex 11252 . . . . . . . . 9 0 ∈ V
6867a1i 11 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 ∈ V)
6912, 11, 68fdmfifsupp 9412 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹 finSupp 0)
7062, 64, 11, 66, 12, 69gsumsubmcl 19951 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (ℂfld Σg 𝐹) ∈ (0[,)+∞))
71 elrege0 13490 . . . . . 6 ((ℂfld Σg 𝐹) ∈ (0[,)+∞) ↔ ((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)))
7270, 71sylib 218 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)))
7355nnred 12278 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (♯‘𝐴) ∈ ℝ)
7455nngt0d 12312 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 < (♯‘𝐴))
75 divge0 12134 . . . . 5 ((((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)) ∧ ((♯‘𝐴) ∈ ℝ ∧ 0 < (♯‘𝐴))) → 0 ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
7672, 73, 74, 75syl12anc 837 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
7761, 76eqbrtrd 5169 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
7877rexlimdvaa 3153 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∃𝑥𝐴 (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))))
79 ralnex 3069 . . 3 (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 ↔ ¬ ∃𝑥𝐴 (𝐹𝑥) = 0)
80 simpl1 1190 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐴 ∈ Fin)
81 simpl2 1191 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐴 ≠ ∅)
82 simpl3 1192 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹:𝐴⟶(0[,)+∞))
8382ffnd 6737 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹 Fn 𝐴)
84 ffvelcdm 7100 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶(0[,)+∞) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (0[,)+∞))
85843ad2antl3 1186 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (0[,)+∞))
86 elrege0 13490 . . . . . . . . . . . . . . 15 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
8785, 86sylib 218 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
8887simprd 495 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → 0 ≤ (𝐹𝑥))
89 0re 11260 . . . . . . . . . . . . . 14 0 ∈ ℝ
9087simpld 494 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
91 leloe 11344 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥))))
9289, 90, 91sylancr 587 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (0 ≤ (𝐹𝑥) ↔ (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥))))
9388, 92mpbid 232 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥)))
9493ord 864 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ 0 < (𝐹𝑥) → 0 = (𝐹𝑥)))
95 eqcom 2741 . . . . . . . . . . 11 (0 = (𝐹𝑥) ↔ (𝐹𝑥) = 0)
9694, 95imbitrdi 251 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ 0 < (𝐹𝑥) → (𝐹𝑥) = 0))
9796con1d 145 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) = 0 → 0 < (𝐹𝑥)))
98 elrp 13033 . . . . . . . . . . 11 ((𝐹𝑥) ∈ ℝ+ ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 < (𝐹𝑥)))
9998baib 535 . . . . . . . . . 10 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ ℝ+ ↔ 0 < (𝐹𝑥)))
10090, 99syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ ℝ+ ↔ 0 < (𝐹𝑥)))
10197, 100sylibrd 259 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) = 0 → (𝐹𝑥) ∈ ℝ+))
102101ralimdva 3164 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 → ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+))
103102imp 406 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+)
104 ffnfv 7138 . . . . . 6 (𝐹:𝐴⟶ℝ+ ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+))
10583, 103, 104sylanbrc 583 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹:𝐴⟶ℝ+)
1061, 80, 81, 105amgmlem 27047 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
107106ex 412 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))))
10879, 107biimtrrid 243 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (¬ ∃𝑥𝐴 (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))))
10978, 108pm2.61d 179 1 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  cdif 3959  cun 3960  cin 3961  wss 3962  c0 4338  {csn 4630   class class class wbr 5147  cmpt 5230  cres 5690   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  Fincfn 8983  cc 11150  cr 11151  0cc0 11152  1c1 11153   · cmul 11157  +∞cpnf 11289   < clt 11292  cle 11293   / cdiv 11917  cn 12263  +crp 13031  [,)cico 13385  chash 14365   Σg cgsu 17486  Mndcmnd 18759  SubMndcsubmnd 18807  CMndccmn 19812  mulGrpcmgp 20151  Ringcrg 20250  CRingccrg 20251  fldccnfld 21381  𝑐ccxp 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-mulg 19098  df-subg 19153  df-ghm 19243  df-gim 19289  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-subrng 20562  df-subrg 20586  df-drng 20747  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-refld 21640  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-cxp 26613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator