MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgm Structured version   Visualization version   GIF version

Theorem amgm 26934
Description: Inequality of arithmetic and geometric means. Here (𝑀 Σg 𝐹) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements 𝐹(𝑥), 𝑥𝐴 together), and (ℂfld Σg 𝐹) calculates the group sum in the additive group (i.e. the sum of the elements). This is Metamath 100 proof #38. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
amgm.1 𝑀 = (mulGrp‘ℂfld)
Assertion
Ref Expression
amgm ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgm.1 . . . . . . . . 9 𝑀 = (mulGrp‘ℂfld)
2 cnfldbas 21300 . . . . . . . . 9 ℂ = (Base‘ℂfld)
31, 2mgpbas 20065 . . . . . . . 8 ℂ = (Base‘𝑀)
4 cnfld1 21335 . . . . . . . . 9 1 = (1r‘ℂfld)
51, 4ringidval 20103 . . . . . . . 8 1 = (0g𝑀)
6 cnfldmul 21304 . . . . . . . . 9 · = (.r‘ℂfld)
71, 6mgpplusg 20064 . . . . . . . 8 · = (+g𝑀)
8 cncrng 21330 . . . . . . . . 9 fld ∈ CRing
91crngmgp 20161 . . . . . . . . 9 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
108, 9mp1i 13 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑀 ∈ CMnd)
11 simpl1 1192 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 ∈ Fin)
12 simpl3 1194 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹:𝐴⟶(0[,)+∞))
13 rge0ssre 13393 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
14 ax-resscn 11101 . . . . . . . . . 10 ℝ ⊆ ℂ
1513, 14sstri 3953 . . . . . . . . 9 (0[,)+∞) ⊆ ℂ
16 fss 6686 . . . . . . . . 9 ((𝐹:𝐴⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
1712, 15, 16sylancl 586 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹:𝐴⟶ℂ)
18 1ex 11146 . . . . . . . . . 10 1 ∈ V
1918a1i 11 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 1 ∈ V)
2017, 11, 19fdmfifsupp 9302 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹 finSupp 1)
21 disjdif 4431 . . . . . . . . 9 ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅
2221a1i 11 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅)
23 undif2 4436 . . . . . . . . 9 ({𝑥} ∪ (𝐴 ∖ {𝑥})) = ({𝑥} ∪ 𝐴)
24 simprl 770 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑥𝐴)
2524snssd 4769 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → {𝑥} ⊆ 𝐴)
26 ssequn1 4145 . . . . . . . . . 10 ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ 𝐴) = 𝐴)
2725, 26sylib 218 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ({𝑥} ∪ 𝐴) = 𝐴)
2823, 27eqtr2id 2777 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 = ({𝑥} ∪ (𝐴 ∖ {𝑥})))
293, 5, 7, 10, 11, 17, 20, 22, 28gsumsplit 19842 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg 𝐹) = ((𝑀 Σg (𝐹 ↾ {𝑥})) · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))))
3012, 25feqresmpt 6912 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ {𝑥}) = (𝑦 ∈ {𝑥} ↦ (𝐹𝑦)))
3130oveq2d 7385 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ {𝑥})) = (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))))
32 cnring 21332 . . . . . . . . . . 11 fld ∈ Ring
331ringmgp 20159 . . . . . . . . . . 11 (ℂfld ∈ Ring → 𝑀 ∈ Mnd)
3432, 33mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑀 ∈ Mnd)
3517, 24ffvelcdmd 7039 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹𝑥) ∈ ℂ)
36 fveq2 6840 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
373, 36gsumsn 19868 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑥𝐴 ∧ (𝐹𝑥) ∈ ℂ) → (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))) = (𝐹𝑥))
3834, 24, 35, 37syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))) = (𝐹𝑥))
39 simprr 772 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹𝑥) = 0)
4031, 38, 393eqtrd 2768 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ {𝑥})) = 0)
4140oveq1d 7384 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg (𝐹 ↾ {𝑥})) · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))) = (0 · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))))
42 diffi 9116 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin)
4311, 42syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐴 ∖ {𝑥}) ∈ Fin)
44 difss 4095 . . . . . . . . . 10 (𝐴 ∖ {𝑥}) ⊆ 𝐴
45 fssres 6708 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝑥}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑥})):(𝐴 ∖ {𝑥})⟶ℂ)
4617, 44, 45sylancl 586 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ (𝐴 ∖ {𝑥})):(𝐴 ∖ {𝑥})⟶ℂ)
4746, 43, 19fdmfifsupp 9302 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ (𝐴 ∖ {𝑥})) finSupp 1)
483, 5, 10, 43, 46, 47gsumcl 19829 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥}))) ∈ ℂ)
4948mul02d 11348 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0 · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))) = 0)
5029, 41, 493eqtrd 2768 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg 𝐹) = 0)
5150oveq1d 7384 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (0↑𝑐(1 / (♯‘𝐴))))
52 simpl2 1193 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 ≠ ∅)
53 hashnncl 14307 . . . . . . . . . 10 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
5411, 53syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
5552, 54mpbird 257 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (♯‘𝐴) ∈ ℕ)
5655nncnd 12178 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (♯‘𝐴) ∈ ℂ)
5755nnne0d 12212 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (♯‘𝐴) ≠ 0)
5856, 57reccld 11927 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (1 / (♯‘𝐴)) ∈ ℂ)
5956, 57recne0d 11928 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (1 / (♯‘𝐴)) ≠ 0)
6058, 590cxpd 26652 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0↑𝑐(1 / (♯‘𝐴))) = 0)
6151, 60eqtrd 2764 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = 0)
62 cnfld0 21334 . . . . . . 7 0 = (0g‘ℂfld)
63 ringcmn 20202 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
6432, 63mp1i 13 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ℂfld ∈ CMnd)
65 rege0subm 21365 . . . . . . . 8 (0[,)+∞) ∈ (SubMnd‘ℂfld)
6665a1i 11 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0[,)+∞) ∈ (SubMnd‘ℂfld))
67 c0ex 11144 . . . . . . . . 9 0 ∈ V
6867a1i 11 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 ∈ V)
6912, 11, 68fdmfifsupp 9302 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹 finSupp 0)
7062, 64, 11, 66, 12, 69gsumsubmcl 19833 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (ℂfld Σg 𝐹) ∈ (0[,)+∞))
71 elrege0 13391 . . . . . 6 ((ℂfld Σg 𝐹) ∈ (0[,)+∞) ↔ ((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)))
7270, 71sylib 218 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)))
7355nnred 12177 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (♯‘𝐴) ∈ ℝ)
7455nngt0d 12211 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 < (♯‘𝐴))
75 divge0 12028 . . . . 5 ((((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)) ∧ ((♯‘𝐴) ∈ ℝ ∧ 0 < (♯‘𝐴))) → 0 ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
7672, 73, 74, 75syl12anc 836 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
7761, 76eqbrtrd 5124 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
7877rexlimdvaa 3135 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∃𝑥𝐴 (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))))
79 ralnex 3055 . . 3 (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 ↔ ¬ ∃𝑥𝐴 (𝐹𝑥) = 0)
80 simpl1 1192 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐴 ∈ Fin)
81 simpl2 1193 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐴 ≠ ∅)
82 simpl3 1194 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹:𝐴⟶(0[,)+∞))
8382ffnd 6671 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹 Fn 𝐴)
84 ffvelcdm 7035 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶(0[,)+∞) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (0[,)+∞))
85843ad2antl3 1188 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (0[,)+∞))
86 elrege0 13391 . . . . . . . . . . . . . . 15 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
8785, 86sylib 218 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
8887simprd 495 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → 0 ≤ (𝐹𝑥))
89 0re 11152 . . . . . . . . . . . . . 14 0 ∈ ℝ
9087simpld 494 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
91 leloe 11236 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥))))
9289, 90, 91sylancr 587 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (0 ≤ (𝐹𝑥) ↔ (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥))))
9388, 92mpbid 232 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥)))
9493ord 864 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ 0 < (𝐹𝑥) → 0 = (𝐹𝑥)))
95 eqcom 2736 . . . . . . . . . . 11 (0 = (𝐹𝑥) ↔ (𝐹𝑥) = 0)
9694, 95imbitrdi 251 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ 0 < (𝐹𝑥) → (𝐹𝑥) = 0))
9796con1d 145 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) = 0 → 0 < (𝐹𝑥)))
98 elrp 12929 . . . . . . . . . . 11 ((𝐹𝑥) ∈ ℝ+ ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 < (𝐹𝑥)))
9998baib 535 . . . . . . . . . 10 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ ℝ+ ↔ 0 < (𝐹𝑥)))
10090, 99syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ ℝ+ ↔ 0 < (𝐹𝑥)))
10197, 100sylibrd 259 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) = 0 → (𝐹𝑥) ∈ ℝ+))
102101ralimdva 3145 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 → ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+))
103102imp 406 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+)
104 ffnfv 7073 . . . . . 6 (𝐹:𝐴⟶ℝ+ ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+))
10583, 103, 104sylanbrc 583 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹:𝐴⟶ℝ+)
1061, 80, 81, 105amgmlem 26933 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
107106ex 412 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))))
10879, 107biimtrrid 243 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (¬ ∃𝑥𝐴 (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))))
10978, 108pm2.61d 179 1 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  {csn 4585   class class class wbr 5102  cmpt 5183  cres 5633   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  +∞cpnf 11181   < clt 11184  cle 11185   / cdiv 11811  cn 12162  +crp 12927  [,)cico 13284  chash 14271   Σg cgsu 17379  Mndcmnd 18643  SubMndcsubmnd 18691  CMndccmn 19694  mulGrpcmgp 20060  Ringcrg 20153  CRingccrg 20154  fldccnfld 21296  𝑐ccxp 26497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-mulg 18982  df-subg 19037  df-ghm 19127  df-gim 19173  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-subrng 20466  df-subrg 20490  df-drng 20651  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-refld 21547  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-cxp 26499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator