MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgm Structured version   Visualization version   GIF version

Theorem amgm 27034
Description: Inequality of arithmetic and geometric means. Here (𝑀 Σg 𝐹) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements 𝐹(𝑥), 𝑥𝐴 together), and (ℂfld Σg 𝐹) calculates the group sum in the additive group (i.e. the sum of the elements). This is Metamath 100 proof #38. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
amgm.1 𝑀 = (mulGrp‘ℂfld)
Assertion
Ref Expression
amgm ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))

Proof of Theorem amgm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgm.1 . . . . . . . . 9 𝑀 = (mulGrp‘ℂfld)
2 cnfldbas 21368 . . . . . . . . 9 ℂ = (Base‘ℂfld)
31, 2mgpbas 20142 . . . . . . . 8 ℂ = (Base‘𝑀)
4 cnfld1 21406 . . . . . . . . 9 1 = (1r‘ℂfld)
51, 4ringidval 20180 . . . . . . . 8 1 = (0g𝑀)
6 cnfldmul 21372 . . . . . . . . 9 · = (.r‘ℂfld)
71, 6mgpplusg 20141 . . . . . . . 8 · = (+g𝑀)
8 cncrng 21401 . . . . . . . . 9 fld ∈ CRing
91crngmgp 20238 . . . . . . . . 9 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
108, 9mp1i 13 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑀 ∈ CMnd)
11 simpl1 1192 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 ∈ Fin)
12 simpl3 1194 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹:𝐴⟶(0[,)+∞))
13 rge0ssre 13496 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
14 ax-resscn 11212 . . . . . . . . . 10 ℝ ⊆ ℂ
1513, 14sstri 3993 . . . . . . . . 9 (0[,)+∞) ⊆ ℂ
16 fss 6752 . . . . . . . . 9 ((𝐹:𝐴⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
1712, 15, 16sylancl 586 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹:𝐴⟶ℂ)
18 1ex 11257 . . . . . . . . . 10 1 ∈ V
1918a1i 11 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 1 ∈ V)
2017, 11, 19fdmfifsupp 9415 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹 finSupp 1)
21 disjdif 4472 . . . . . . . . 9 ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅
2221a1i 11 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅)
23 undif2 4477 . . . . . . . . 9 ({𝑥} ∪ (𝐴 ∖ {𝑥})) = ({𝑥} ∪ 𝐴)
24 simprl 771 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑥𝐴)
2524snssd 4809 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → {𝑥} ⊆ 𝐴)
26 ssequn1 4186 . . . . . . . . . 10 ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ 𝐴) = 𝐴)
2725, 26sylib 218 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ({𝑥} ∪ 𝐴) = 𝐴)
2823, 27eqtr2id 2790 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 = ({𝑥} ∪ (𝐴 ∖ {𝑥})))
293, 5, 7, 10, 11, 17, 20, 22, 28gsumsplit 19946 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg 𝐹) = ((𝑀 Σg (𝐹 ↾ {𝑥})) · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))))
3012, 25feqresmpt 6978 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ {𝑥}) = (𝑦 ∈ {𝑥} ↦ (𝐹𝑦)))
3130oveq2d 7447 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ {𝑥})) = (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))))
32 cnring 21403 . . . . . . . . . . 11 fld ∈ Ring
331ringmgp 20236 . . . . . . . . . . 11 (ℂfld ∈ Ring → 𝑀 ∈ Mnd)
3432, 33mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑀 ∈ Mnd)
3517, 24ffvelcdmd 7105 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹𝑥) ∈ ℂ)
36 fveq2 6906 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
373, 36gsumsn 19972 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑥𝐴 ∧ (𝐹𝑥) ∈ ℂ) → (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))) = (𝐹𝑥))
3834, 24, 35, 37syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))) = (𝐹𝑥))
39 simprr 773 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹𝑥) = 0)
4031, 38, 393eqtrd 2781 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ {𝑥})) = 0)
4140oveq1d 7446 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg (𝐹 ↾ {𝑥})) · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))) = (0 · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))))
42 diffi 9215 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin)
4311, 42syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐴 ∖ {𝑥}) ∈ Fin)
44 difss 4136 . . . . . . . . . 10 (𝐴 ∖ {𝑥}) ⊆ 𝐴
45 fssres 6774 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝑥}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑥})):(𝐴 ∖ {𝑥})⟶ℂ)
4617, 44, 45sylancl 586 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ (𝐴 ∖ {𝑥})):(𝐴 ∖ {𝑥})⟶ℂ)
4746, 43, 19fdmfifsupp 9415 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ (𝐴 ∖ {𝑥})) finSupp 1)
483, 5, 10, 43, 46, 47gsumcl 19933 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥}))) ∈ ℂ)
4948mul02d 11459 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0 · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))) = 0)
5029, 41, 493eqtrd 2781 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg 𝐹) = 0)
5150oveq1d 7446 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = (0↑𝑐(1 / (♯‘𝐴))))
52 simpl2 1193 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 ≠ ∅)
53 hashnncl 14405 . . . . . . . . . 10 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
5411, 53syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
5552, 54mpbird 257 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (♯‘𝐴) ∈ ℕ)
5655nncnd 12282 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (♯‘𝐴) ∈ ℂ)
5755nnne0d 12316 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (♯‘𝐴) ≠ 0)
5856, 57reccld 12036 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (1 / (♯‘𝐴)) ∈ ℂ)
5956, 57recne0d 12037 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (1 / (♯‘𝐴)) ≠ 0)
6058, 590cxpd 26752 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0↑𝑐(1 / (♯‘𝐴))) = 0)
6151, 60eqtrd 2777 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) = 0)
62 cnfld0 21405 . . . . . . 7 0 = (0g‘ℂfld)
63 ringcmn 20279 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
6432, 63mp1i 13 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ℂfld ∈ CMnd)
65 rege0subm 21441 . . . . . . . 8 (0[,)+∞) ∈ (SubMnd‘ℂfld)
6665a1i 11 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0[,)+∞) ∈ (SubMnd‘ℂfld))
67 c0ex 11255 . . . . . . . . 9 0 ∈ V
6867a1i 11 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 ∈ V)
6912, 11, 68fdmfifsupp 9415 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹 finSupp 0)
7062, 64, 11, 66, 12, 69gsumsubmcl 19937 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (ℂfld Σg 𝐹) ∈ (0[,)+∞))
71 elrege0 13494 . . . . . 6 ((ℂfld Σg 𝐹) ∈ (0[,)+∞) ↔ ((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)))
7270, 71sylib 218 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)))
7355nnred 12281 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (♯‘𝐴) ∈ ℝ)
7455nngt0d 12315 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 < (♯‘𝐴))
75 divge0 12137 . . . . 5 ((((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)) ∧ ((♯‘𝐴) ∈ ℝ ∧ 0 < (♯‘𝐴))) → 0 ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
7672, 73, 74, 75syl12anc 837 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
7761, 76eqbrtrd 5165 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
7877rexlimdvaa 3156 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∃𝑥𝐴 (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))))
79 ralnex 3072 . . 3 (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 ↔ ¬ ∃𝑥𝐴 (𝐹𝑥) = 0)
80 simpl1 1192 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐴 ∈ Fin)
81 simpl2 1193 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐴 ≠ ∅)
82 simpl3 1194 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹:𝐴⟶(0[,)+∞))
8382ffnd 6737 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹 Fn 𝐴)
84 ffvelcdm 7101 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶(0[,)+∞) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (0[,)+∞))
85843ad2antl3 1188 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (0[,)+∞))
86 elrege0 13494 . . . . . . . . . . . . . . 15 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
8785, 86sylib 218 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
8887simprd 495 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → 0 ≤ (𝐹𝑥))
89 0re 11263 . . . . . . . . . . . . . 14 0 ∈ ℝ
9087simpld 494 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
91 leloe 11347 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥))))
9289, 90, 91sylancr 587 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (0 ≤ (𝐹𝑥) ↔ (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥))))
9388, 92mpbid 232 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥)))
9493ord 865 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ 0 < (𝐹𝑥) → 0 = (𝐹𝑥)))
95 eqcom 2744 . . . . . . . . . . 11 (0 = (𝐹𝑥) ↔ (𝐹𝑥) = 0)
9694, 95imbitrdi 251 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ 0 < (𝐹𝑥) → (𝐹𝑥) = 0))
9796con1d 145 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) = 0 → 0 < (𝐹𝑥)))
98 elrp 13036 . . . . . . . . . . 11 ((𝐹𝑥) ∈ ℝ+ ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 < (𝐹𝑥)))
9998baib 535 . . . . . . . . . 10 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ ℝ+ ↔ 0 < (𝐹𝑥)))
10090, 99syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ ℝ+ ↔ 0 < (𝐹𝑥)))
10197, 100sylibrd 259 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) = 0 → (𝐹𝑥) ∈ ℝ+))
102101ralimdva 3167 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 → ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+))
103102imp 406 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+)
104 ffnfv 7139 . . . . . 6 (𝐹:𝐴⟶ℝ+ ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+))
10583, 103, 104sylanbrc 583 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹:𝐴⟶ℝ+)
1061, 80, 81, 105amgmlem 27033 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
107106ex 412 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))))
10879, 107biimtrrid 243 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (¬ ∃𝑥𝐴 (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))))
10978, 108pm2.61d 179 1 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  cmpt 5225  cres 5687   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  +∞cpnf 11292   < clt 11295  cle 11296   / cdiv 11920  cn 12266  +crp 13034  [,)cico 13389  chash 14369   Σg cgsu 17485  Mndcmnd 18747  SubMndcsubmnd 18795  CMndccmn 19798  mulGrpcmgp 20137  Ringcrg 20230  CRingccrg 20231  fldccnfld 21364  𝑐ccxp 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-mulg 19086  df-subg 19141  df-ghm 19231  df-gim 19277  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-subrng 20546  df-subrg 20570  df-drng 20731  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-refld 21623  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator