![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cxp | Structured version Visualization version GIF version |
Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
0cxp | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10321 | . . . 4 ⊢ 0 ∈ ℂ | |
2 | cxpval 24750 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0↑𝑐𝐴) = if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0))))) | |
3 | 1, 2 | mpan 682 | . . 3 ⊢ (𝐴 ∈ ℂ → (0↑𝑐𝐴) = if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0))))) |
4 | eqid 2800 | . . . 4 ⊢ 0 = 0 | |
5 | 4 | iftruei 4285 | . . 3 ⊢ if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))) = if(𝐴 = 0, 1, 0) |
6 | 3, 5 | syl6eq 2850 | . 2 ⊢ (𝐴 ∈ ℂ → (0↑𝑐𝐴) = if(𝐴 = 0, 1, 0)) |
7 | ifnefalse 4290 | . 2 ⊢ (𝐴 ≠ 0 → if(𝐴 = 0, 1, 0) = 0) | |
8 | 6, 7 | sylan9eq 2854 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 ifcif 4278 ‘cfv 6102 (class class class)co 6879 ℂcc 10223 0cc0 10225 1c1 10226 · cmul 10230 expce 15127 logclog 24641 ↑𝑐ccxp 24642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-mulcl 10287 ax-i2m1 10293 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-iota 6065 df-fun 6104 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-cxp 24644 |
This theorem is referenced by: cxpexp 24754 cxpeq0 24764 cxpge0 24769 mulcxplem 24770 cxpmul2 24775 cxple2 24783 cxpsqrt 24789 0cxpd 24796 cxpsqrtth 24815 abscxpbnd 24837 |
Copyright terms: Public domain | W3C validator |