MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cxp Structured version   Visualization version   GIF version

Theorem 0cxp 25176
Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
0cxp ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0)

Proof of Theorem 0cxp
StepHypRef Expression
1 0cn 10621 . . . 4 0 ∈ ℂ
2 cxpval 25174 . . . 4 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0↑𝑐𝐴) = if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))))
31, 2mpan 686 . . 3 (𝐴 ∈ ℂ → (0↑𝑐𝐴) = if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))))
4 eqid 2818 . . . 4 0 = 0
54iftruei 4470 . . 3 if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))) = if(𝐴 = 0, 1, 0)
63, 5syl6eq 2869 . 2 (𝐴 ∈ ℂ → (0↑𝑐𝐴) = if(𝐴 = 0, 1, 0))
7 ifnefalse 4475 . 2 (𝐴 ≠ 0 → if(𝐴 = 0, 1, 0) = 0)
86, 7sylan9eq 2873 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  ifcif 4463  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525  1c1 10526   · cmul 10530  expce 15403  logclog 25065  𝑐ccxp 25066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-mulcl 10587  ax-i2m1 10593
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-cxp 25068
This theorem is referenced by:  cxpexp  25178  cxpeq0  25188  cxpge0  25193  mulcxplem  25194  cxpmul2  25199  cxple2  25207  cxpsqrt  25213  0cxpd  25220  cxpsqrtth  25239  abscxpbnd  25261
  Copyright terms: Public domain W3C validator