MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cxp Structured version   Visualization version   GIF version

Theorem 0cxp 26165
Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
0cxp ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0)

Proof of Theorem 0cxp
StepHypRef Expression
1 0cn 11202 . . . 4 0 ∈ ℂ
2 cxpval 26163 . . . 4 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0↑𝑐𝐴) = if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))))
31, 2mpan 688 . . 3 (𝐴 ∈ ℂ → (0↑𝑐𝐴) = if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))))
4 eqid 2732 . . . 4 0 = 0
54iftruei 4534 . . 3 if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))) = if(𝐴 = 0, 1, 0)
63, 5eqtrdi 2788 . 2 (𝐴 ∈ ℂ → (0↑𝑐𝐴) = if(𝐴 = 0, 1, 0))
7 ifnefalse 4539 . 2 (𝐴 ≠ 0 → if(𝐴 = 0, 1, 0) = 0)
86, 7sylan9eq 2792 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  ifcif 4527  cfv 6540  (class class class)co 7405  cc 11104  0cc0 11106  1c1 11107   · cmul 11111  expce 16001  logclog 26054  𝑐ccxp 26055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-mulcl 11168  ax-i2m1 11174
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-cxp 26057
This theorem is referenced by:  cxpexp  26167  cxpeq0  26177  cxpge0  26182  mulcxplem  26183  cxpmul2  26188  cxple2  26196  cxpsqrt  26202  0cxpd  26209  cxpsqrtth  26228  abscxpbnd  26250
  Copyright terms: Public domain W3C validator