![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cxp | Structured version Visualization version GIF version |
Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
0cxp | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11251 | . . . 4 ⊢ 0 ∈ ℂ | |
2 | cxpval 26721 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0↑𝑐𝐴) = if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0))))) | |
3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (0↑𝑐𝐴) = if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0))))) |
4 | eqid 2735 | . . . 4 ⊢ 0 = 0 | |
5 | 4 | iftruei 4538 | . . 3 ⊢ if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))) = if(𝐴 = 0, 1, 0) |
6 | 3, 5 | eqtrdi 2791 | . 2 ⊢ (𝐴 ∈ ℂ → (0↑𝑐𝐴) = if(𝐴 = 0, 1, 0)) |
7 | ifnefalse 4543 | . 2 ⊢ (𝐴 ≠ 0 → if(𝐴 = 0, 1, 0) = 0) | |
8 | 6, 7 | sylan9eq 2795 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ifcif 4531 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 · cmul 11158 expce 16094 logclog 26611 ↑𝑐ccxp 26612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-i2m1 11221 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-cxp 26614 |
This theorem is referenced by: cxpexp 26725 cxpeq0 26735 cxpge0 26740 mulcxplem 26741 cxpmul2 26746 cxple2 26754 cxpsqrt 26760 0cxpd 26767 cxpsqrtth 26787 abscxpbnd 26811 |
Copyright terms: Public domain | W3C validator |