MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cxp Structured version   Visualization version   GIF version

Theorem 0cxp 26575
Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
0cxp ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0)

Proof of Theorem 0cxp
StepHypRef Expression
1 0cn 11166 . . . 4 0 ∈ ℂ
2 cxpval 26573 . . . 4 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (0↑𝑐𝐴) = if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))))
31, 2mpan 690 . . 3 (𝐴 ∈ ℂ → (0↑𝑐𝐴) = if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))))
4 eqid 2729 . . . 4 0 = 0
54iftruei 4495 . . 3 if(0 = 0, if(𝐴 = 0, 1, 0), (exp‘(𝐴 · (log‘0)))) = if(𝐴 = 0, 1, 0)
63, 5eqtrdi 2780 . 2 (𝐴 ∈ ℂ → (0↑𝑐𝐴) = if(𝐴 = 0, 1, 0))
7 ifnefalse 4500 . 2 (𝐴 ≠ 0 → if(𝐴 = 0, 1, 0) = 0)
86, 7sylan9eq 2784 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  ifcif 4488  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   · cmul 11073  expce 16027  logclog 26463  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-i2m1 11136
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-cxp 26466
This theorem is referenced by:  cxpexp  26577  cxpeq0  26587  cxpge0  26592  mulcxplem  26593  cxpmul2  26598  cxple2  26606  cxpsqrt  26612  0cxpd  26619  cxpsqrtth  26639  abscxpbnd  26663
  Copyright terms: Public domain W3C validator