MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvcxp Structured version   Visualization version   GIF version

Theorem abvcxp 26947
Description: Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvcxp.a 𝐴 = (AbsVal‘𝑅)
abvcxp.b 𝐵 = (Base‘𝑅)
abvcxp.f 𝐺 = (𝑥𝐵 ↦ ((𝐹𝑥)↑𝑐𝑆))
Assertion
Ref Expression
abvcxp ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑅   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem abvcxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvcxp.a . . 3 𝐴 = (AbsVal‘𝑅)
21a1i 11 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐴 = (AbsVal‘𝑅))
3 abvcxp.b . . 3 𝐵 = (Base‘𝑅)
43a1i 11 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐵 = (Base‘𝑅))
5 eqidd 2737 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (+g𝑅) = (+g𝑅))
6 eqidd 2737 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (.r𝑅) = (.r𝑅))
7 eqidd 2737 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0g𝑅) = (0g𝑅))
81abvrcl 20265 . . 3 (𝐹𝐴𝑅 ∈ Ring)
98adantr 481 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑅 ∈ Ring)
101, 3abvcl 20268 . . . . 5 ((𝐹𝐴𝑥𝐵) → (𝐹𝑥) ∈ ℝ)
1110adantlr 713 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ ℝ)
121, 3abvge0 20269 . . . . 5 ((𝐹𝐴𝑥𝐵) → 0 ≤ (𝐹𝑥))
1312adantlr 713 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → 0 ≤ (𝐹𝑥))
14 simpr 485 . . . . . . 7 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ (0(,]1))
15 0xr 11198 . . . . . . . 8 0 ∈ ℝ*
16 1re 11151 . . . . . . . 8 1 ∈ ℝ
17 elioc2 13319 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1)))
1815, 16, 17mp2an 690 . . . . . . 7 (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
1914, 18sylib 217 . . . . . 6 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
2019simp1d 1142 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℝ)
2120adantr 481 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → 𝑆 ∈ ℝ)
2211, 13, 21recxpcld 26062 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → ((𝐹𝑥)↑𝑐𝑆) ∈ ℝ)
23 abvcxp.f . . 3 𝐺 = (𝑥𝐵 ↦ ((𝐹𝑥)↑𝑐𝑆))
2422, 23fmptd 7058 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺:𝐵⟶ℝ)
25 eqid 2736 . . . . . 6 (0g𝑅) = (0g𝑅)
263, 25ring0cl 19976 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
279, 26syl 17 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0g𝑅) ∈ 𝐵)
28 fveq2 6839 . . . . . 6 (𝑥 = (0g𝑅) → (𝐹𝑥) = (𝐹‘(0g𝑅)))
2928oveq1d 7368 . . . . 5 (𝑥 = (0g𝑅) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
30 ovex 7386 . . . . 5 ((𝐹‘(0g𝑅))↑𝑐𝑆) ∈ V
3129, 23, 30fvmpt 6945 . . . 4 ((0g𝑅) ∈ 𝐵 → (𝐺‘(0g𝑅)) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
3227, 31syl 17 . . 3 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐺‘(0g𝑅)) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
331, 25abv0 20275 . . . . . 6 (𝐹𝐴 → (𝐹‘(0g𝑅)) = 0)
3433adantr 481 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐹‘(0g𝑅)) = 0)
3534oveq1d 7368 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → ((𝐹‘(0g𝑅))↑𝑐𝑆) = (0↑𝑐𝑆))
3620recnd 11179 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℂ)
3719simp2d 1143 . . . . . 6 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 0 < 𝑆)
3837gt0ne0d 11715 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ≠ 0)
3936, 380cxpd 26049 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0↑𝑐𝑆) = 0)
4035, 39eqtrd 2776 . . 3 ((𝐹𝐴𝑆 ∈ (0(,]1)) → ((𝐹‘(0g𝑅))↑𝑐𝑆) = 0)
4132, 40eqtrd 2776 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐺‘(0g𝑅)) = 0)
42 simp1l 1197 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝐹𝐴)
43 simp2 1137 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝑦𝐵)
441, 3abvcl 20268 . . . . . . 7 ((𝐹𝐴𝑦𝐵) → (𝐹𝑦) ∈ ℝ)
4542, 43, 44syl2anc 584 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐹𝑦) ∈ ℝ)
461, 3, 25abvgt0 20272 . . . . . . 7 ((𝐹𝐴𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐹𝑦))
47463adant1r 1177 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐹𝑦))
4845, 47elrpd 12946 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐹𝑦) ∈ ℝ+)
49203ad2ant1 1133 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝑆 ∈ ℝ)
5048, 49rpcxpcld 26071 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → ((𝐹𝑦)↑𝑐𝑆) ∈ ℝ+)
5150rpgt0d 12952 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < ((𝐹𝑦)↑𝑐𝑆))
52 fveq2 6839 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5352oveq1d 7368 . . . . 5 (𝑥 = 𝑦 → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹𝑦)↑𝑐𝑆))
54 ovex 7386 . . . . 5 ((𝐹𝑦)↑𝑐𝑆) ∈ V
5553, 23, 54fvmpt 6945 . . . 4 (𝑦𝐵 → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
5643, 55syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
5751, 56breqtrrd 5131 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐺𝑦))
58 simp1l 1197 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝐹𝐴)
59 simp2l 1199 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑦𝐵)
60 simp3l 1201 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑧𝐵)
61 eqid 2736 . . . . . . 7 (.r𝑅) = (.r𝑅)
621, 3, 61abvmul 20273 . . . . . 6 ((𝐹𝐴𝑦𝐵𝑧𝐵) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
6358, 59, 60, 62syl3anc 1371 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
6463oveq1d 7368 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) = (((𝐹𝑦) · (𝐹𝑧))↑𝑐𝑆))
6558, 59, 44syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹𝑦) ∈ ℝ)
661, 3abvge0 20269 . . . . . 6 ((𝐹𝐴𝑦𝐵) → 0 ≤ (𝐹𝑦))
6758, 59, 66syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹𝑦))
681, 3abvcl 20268 . . . . . 6 ((𝐹𝐴𝑧𝐵) → (𝐹𝑧) ∈ ℝ)
6958, 60, 68syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹𝑧) ∈ ℝ)
701, 3abvge0 20269 . . . . . 6 ((𝐹𝐴𝑧𝐵) → 0 ≤ (𝐹𝑧))
7158, 60, 70syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹𝑧))
72363ad2ant1 1133 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℂ)
7365, 67, 69, 71, 72mulcxpd 26067 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) · (𝐹𝑧))↑𝑐𝑆) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
7464, 73eqtrd 2776 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
7593ad2ant1 1133 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑅 ∈ Ring)
763, 61ringcl 19967 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(.r𝑅)𝑧) ∈ 𝐵)
7775, 59, 60, 76syl3anc 1371 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑦(.r𝑅)𝑧) ∈ 𝐵)
78 fveq2 6839 . . . . . 6 (𝑥 = (𝑦(.r𝑅)𝑧) → (𝐹𝑥) = (𝐹‘(𝑦(.r𝑅)𝑧)))
7978oveq1d 7368 . . . . 5 (𝑥 = (𝑦(.r𝑅)𝑧) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
80 ovex 7386 . . . . 5 ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) ∈ V
8179, 23, 80fvmpt 6945 . . . 4 ((𝑦(.r𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
8277, 81syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
8359, 55syl 17 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
84 fveq2 6839 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
8584oveq1d 7368 . . . . . 6 (𝑥 = 𝑧 → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹𝑧)↑𝑐𝑆))
86 ovex 7386 . . . . . 6 ((𝐹𝑧)↑𝑐𝑆) ∈ V
8785, 23, 86fvmpt 6945 . . . . 5 (𝑧𝐵 → (𝐺𝑧) = ((𝐹𝑧)↑𝑐𝑆))
8860, 87syl 17 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺𝑧) = ((𝐹𝑧)↑𝑐𝑆))
8983, 88oveq12d 7371 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐺𝑦) · (𝐺𝑧)) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
9074, 82, 893eqtr4d 2786 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
91 ringgrp 19955 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
9275, 91syl 17 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑅 ∈ Grp)
93 eqid 2736 . . . . . . . 8 (+g𝑅) = (+g𝑅)
943, 93grpcl 18748 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
9592, 59, 60, 94syl3anc 1371 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
961, 3abvcl 20268 . . . . . 6 ((𝐹𝐴 ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵) → (𝐹‘(𝑦(+g𝑅)𝑧)) ∈ ℝ)
9758, 95, 96syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(+g𝑅)𝑧)) ∈ ℝ)
981, 3abvge0 20269 . . . . . 6 ((𝐹𝐴 ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑦(+g𝑅)𝑧)))
9958, 95, 98syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹‘(𝑦(+g𝑅)𝑧)))
100193ad2ant1 1133 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
101100simp1d 1142 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℝ)
10297, 99, 101recxpcld 26062 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ∈ ℝ)
10365, 69readdcld 11180 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑦) + (𝐹𝑧)) ∈ ℝ)
10465, 69, 67, 71addge0d 11727 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ ((𝐹𝑦) + (𝐹𝑧)))
105103, 104, 101recxpcld 26062 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆) ∈ ℝ)
10665, 67, 101recxpcld 26062 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑦)↑𝑐𝑆) ∈ ℝ)
10769, 71, 101recxpcld 26062 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑧)↑𝑐𝑆) ∈ ℝ)
108106, 107readdcld 11180 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)) ∈ ℝ)
1091, 3, 93abvtri 20274 . . . . . 6 ((𝐹𝐴𝑦𝐵𝑧𝐵) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
11058, 59, 60, 109syl3anc 1371 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
111100simp2d 1143 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 < 𝑆)
112101, 111elrpd 12946 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℝ+)
11397, 99, 103, 104, 112cxple2d 26066 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)) ↔ ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆)))
114110, 113mpbid 231 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆))
115100simp3d 1144 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ≤ 1)
11665, 67, 69, 71, 112, 115cxpaddle 26089 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
117102, 105, 108, 114, 116letrd 11308 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
118 fveq2 6839 . . . . . 6 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝐹𝑥) = (𝐹‘(𝑦(+g𝑅)𝑧)))
119118oveq1d 7368 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
120 ovex 7386 . . . . 5 ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ∈ V
121119, 23, 120fvmpt 6945 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(+g𝑅)𝑧)) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
12295, 121syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(+g𝑅)𝑧)) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
12383, 88oveq12d 7371 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐺𝑦) + (𝐺𝑧)) = (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
124117, 122, 1233brtr4d 5135 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐺𝑦) + (𝐺𝑧)))
1252, 4, 5, 6, 7, 9, 24, 41, 57, 90, 124isabvd 20264 1 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2941   class class class wbr 5103  cmpt 5186  cfv 6493  (class class class)co 7353  cc 11045  cr 11046  0cc0 11047  1c1 11048   + caddc 11050   · cmul 11052  *cxr 11184   < clt 11185  cle 11186  (,]cioc 13257  Basecbs 17075  +gcplusg 17125  .rcmulr 17126  0gc0g 17313  Grpcgrp 18740  Ringcrg 19950  AbsValcabv 20260  𝑐ccxp 25895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-inf2 9573  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125  ax-addf 11126  ax-mulf 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7613  df-om 7799  df-1st 7917  df-2nd 7918  df-supp 8089  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-1o 8408  df-2o 8409  df-er 8644  df-map 8763  df-pm 8764  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9302  df-fi 9343  df-sup 9374  df-inf 9375  df-oi 9442  df-card 9871  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-nn 12150  df-2 12212  df-3 12213  df-4 12214  df-5 12215  df-6 12216  df-7 12217  df-8 12218  df-9 12219  df-n0 12410  df-z 12496  df-dec 12615  df-uz 12760  df-q 12866  df-rp 12908  df-xneg 13025  df-xadd 13026  df-xmul 13027  df-ioo 13260  df-ioc 13261  df-ico 13262  df-icc 13263  df-fz 13417  df-fzo 13560  df-fl 13689  df-mod 13767  df-seq 13899  df-exp 13960  df-fac 14166  df-bc 14195  df-hash 14223  df-shft 14944  df-cj 14976  df-re 14977  df-im 14978  df-sqrt 15112  df-abs 15113  df-limsup 15345  df-clim 15362  df-rlim 15363  df-sum 15563  df-ef 15942  df-sin 15944  df-cos 15945  df-pi 15947  df-struct 17011  df-sets 17028  df-slot 17046  df-ndx 17058  df-base 17076  df-ress 17105  df-plusg 17138  df-mulr 17139  df-starv 17140  df-sca 17141  df-vsca 17142  df-ip 17143  df-tset 17144  df-ple 17145  df-ds 17147  df-unif 17148  df-hom 17149  df-cco 17150  df-rest 17296  df-topn 17297  df-0g 17315  df-gsum 17316  df-topgen 17317  df-pt 17318  df-prds 17321  df-xrs 17376  df-qtop 17381  df-imas 17382  df-xps 17384  df-mre 17458  df-mrc 17459  df-acs 17461  df-mgm 18489  df-sgrp 18538  df-mnd 18549  df-submnd 18594  df-grp 18743  df-minusg 18744  df-mulg 18864  df-cntz 19088  df-cmn 19555  df-mgp 19888  df-ring 19952  df-abv 20261  df-psmet 20773  df-xmet 20774  df-met 20775  df-bl 20776  df-mopn 20777  df-fbas 20778  df-fg 20779  df-cnfld 20782  df-top 22227  df-topon 22244  df-topsp 22266  df-bases 22280  df-cld 22354  df-ntr 22355  df-cls 22356  df-nei 22433  df-lp 22471  df-perf 22472  df-cn 22562  df-cnp 22563  df-haus 22650  df-tx 22897  df-hmeo 23090  df-fil 23181  df-fm 23273  df-flim 23274  df-flf 23275  df-xms 23657  df-ms 23658  df-tms 23659  df-cncf 24225  df-limc 25214  df-dv 25215  df-log 25896  df-cxp 25897
This theorem is referenced by:  ostth2  26969  ostth  26971
  Copyright terms: Public domain W3C validator