Step | Hyp | Ref
| Expression |
1 | | abvcxp.a |
. . 3
⊢ 𝐴 = (AbsVal‘𝑅) |
2 | 1 | a1i 11 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝐴 = (AbsVal‘𝑅)) |
3 | | abvcxp.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
4 | 3 | a1i 11 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝐵 = (Base‘𝑅)) |
5 | | eqidd 2734 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) →
(+g‘𝑅) =
(+g‘𝑅)) |
6 | | eqidd 2734 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) →
(.r‘𝑅) =
(.r‘𝑅)) |
7 | | eqidd 2734 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) →
(0g‘𝑅) =
(0g‘𝑅)) |
8 | 1 | abvrcl 20109 |
. . 3
⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
9 | 8 | adantr 480 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝑅 ∈ Ring) |
10 | 1, 3 | abvcl 20112 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) ∈ ℝ) |
11 | 10 | adantlr 711 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) ∈ ℝ) |
12 | 1, 3 | abvge0 20113 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 0 ≤ (𝐹‘𝑥)) |
13 | 12 | adantlr 711 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑥 ∈ 𝐵) → 0 ≤ (𝐹‘𝑥)) |
14 | | simpr 484 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝑆 ∈ (0(,]1)) |
15 | | 0xr 11050 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
16 | | 1re 11003 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
17 | | elioc2 13170 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 < 𝑆 ∧ 𝑆 ≤ 1))) |
18 | 15, 16, 17 | mp2an 688 |
. . . . . . 7
⊢ (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 <
𝑆 ∧ 𝑆 ≤ 1)) |
19 | 14, 18 | sylib 217 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → (𝑆 ∈ ℝ ∧ 0 < 𝑆 ∧ 𝑆 ≤ 1)) |
20 | 19 | simp1d 1140 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℝ) |
21 | 20 | adantr 480 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ ℝ) |
22 | 11, 13, 21 | recxpcld 25906 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑥)↑𝑐𝑆) ∈ ℝ) |
23 | | abvcxp.f |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ ((𝐹‘𝑥)↑𝑐𝑆)) |
24 | 22, 23 | fmptd 7008 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝐺:𝐵⟶ℝ) |
25 | | eqid 2733 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
26 | 3, 25 | ring0cl 19836 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ 𝐵) |
27 | 9, 26 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) →
(0g‘𝑅)
∈ 𝐵) |
28 | | fveq2 6792 |
. . . . . 6
⊢ (𝑥 = (0g‘𝑅) → (𝐹‘𝑥) = (𝐹‘(0g‘𝑅))) |
29 | 28 | oveq1d 7310 |
. . . . 5
⊢ (𝑥 = (0g‘𝑅) → ((𝐹‘𝑥)↑𝑐𝑆) = ((𝐹‘(0g‘𝑅))↑𝑐𝑆)) |
30 | | ovex 7328 |
. . . . 5
⊢ ((𝐹‘(0g‘𝑅))↑𝑐𝑆) ∈ V |
31 | 29, 23, 30 | fvmpt 6895 |
. . . 4
⊢
((0g‘𝑅) ∈ 𝐵 → (𝐺‘(0g‘𝑅)) = ((𝐹‘(0g‘𝑅))↑𝑐𝑆)) |
32 | 27, 31 | syl 17 |
. . 3
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → (𝐺‘(0g‘𝑅)) = ((𝐹‘(0g‘𝑅))↑𝑐𝑆)) |
33 | 1, 25 | abv0 20119 |
. . . . . 6
⊢ (𝐹 ∈ 𝐴 → (𝐹‘(0g‘𝑅)) = 0) |
34 | 33 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → (𝐹‘(0g‘𝑅)) = 0) |
35 | 34 | oveq1d 7310 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → ((𝐹‘(0g‘𝑅))↑𝑐𝑆) =
(0↑𝑐𝑆)) |
36 | 20 | recnd 11031 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℂ) |
37 | 19 | simp2d 1141 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 0 < 𝑆) |
38 | 37 | gt0ne0d 11567 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝑆 ≠ 0) |
39 | 36, 38 | 0cxpd 25893 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) →
(0↑𝑐𝑆) = 0) |
40 | 35, 39 | eqtrd 2773 |
. . 3
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → ((𝐹‘(0g‘𝑅))↑𝑐𝑆) = 0) |
41 | 32, 40 | eqtrd 2773 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → (𝐺‘(0g‘𝑅)) = 0) |
42 | | simp1l 1195 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 𝐹 ∈ 𝐴) |
43 | | simp2 1135 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 𝑦 ∈ 𝐵) |
44 | 1, 3 | abvcl 20112 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ ℝ) |
45 | 42, 43, 44 | syl2anc 583 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → (𝐹‘𝑦) ∈ ℝ) |
46 | 1, 3, 25 | abvgt0 20116 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 0 < (𝐹‘𝑦)) |
47 | 46 | 3adant1r 1175 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 0 < (𝐹‘𝑦)) |
48 | 45, 47 | elrpd 12797 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → (𝐹‘𝑦) ∈
ℝ+) |
49 | 20 | 3ad2ant1 1131 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 𝑆 ∈ ℝ) |
50 | 48, 49 | rpcxpcld 25915 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → ((𝐹‘𝑦)↑𝑐𝑆) ∈
ℝ+) |
51 | 50 | rpgt0d 12803 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 0 < ((𝐹‘𝑦)↑𝑐𝑆)) |
52 | | fveq2 6792 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
53 | 52 | oveq1d 7310 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥)↑𝑐𝑆) = ((𝐹‘𝑦)↑𝑐𝑆)) |
54 | | ovex 7328 |
. . . . 5
⊢ ((𝐹‘𝑦)↑𝑐𝑆) ∈ V |
55 | 53, 23, 54 | fvmpt 6895 |
. . . 4
⊢ (𝑦 ∈ 𝐵 → (𝐺‘𝑦) = ((𝐹‘𝑦)↑𝑐𝑆)) |
56 | 43, 55 | syl 17 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → (𝐺‘𝑦) = ((𝐹‘𝑦)↑𝑐𝑆)) |
57 | 51, 56 | breqtrrd 5105 |
. 2
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 0 < (𝐺‘𝑦)) |
58 | | simp1l 1195 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝐹 ∈ 𝐴) |
59 | | simp2l 1197 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑦 ∈ 𝐵) |
60 | | simp3l 1199 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑧 ∈ 𝐵) |
61 | | eqid 2733 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
62 | 1, 3, 61 | abvmul 20117 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦) · (𝐹‘𝑧))) |
63 | 58, 59, 60, 62 | syl3anc 1369 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦) · (𝐹‘𝑧))) |
64 | 63 | oveq1d 7310 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘(𝑦(.r‘𝑅)𝑧))↑𝑐𝑆) = (((𝐹‘𝑦) · (𝐹‘𝑧))↑𝑐𝑆)) |
65 | 58, 59, 44 | syl2anc 583 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐹‘𝑦) ∈ ℝ) |
66 | 1, 3 | abvge0 20113 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 0 ≤ (𝐹‘𝑦)) |
67 | 58, 59, 66 | syl2anc 583 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 0 ≤ (𝐹‘𝑦)) |
68 | 1, 3 | abvcl 20112 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (𝐹‘𝑧) ∈ ℝ) |
69 | 58, 60, 68 | syl2anc 583 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐹‘𝑧) ∈ ℝ) |
70 | 1, 3 | abvge0 20113 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 0 ≤ (𝐹‘𝑧)) |
71 | 58, 60, 70 | syl2anc 583 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 0 ≤ (𝐹‘𝑧)) |
72 | 36 | 3ad2ant1 1131 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑆 ∈ ℂ) |
73 | 65, 67, 69, 71, 72 | mulcxpd 25911 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (((𝐹‘𝑦) · (𝐹‘𝑧))↑𝑐𝑆) = (((𝐹‘𝑦)↑𝑐𝑆) · ((𝐹‘𝑧)↑𝑐𝑆))) |
74 | 64, 73 | eqtrd 2773 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘(𝑦(.r‘𝑅)𝑧))↑𝑐𝑆) = (((𝐹‘𝑦)↑𝑐𝑆) · ((𝐹‘𝑧)↑𝑐𝑆))) |
75 | 9 | 3ad2ant1 1131 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑅 ∈ Ring) |
76 | 3, 61 | ringcl 19828 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(.r‘𝑅)𝑧) ∈ 𝐵) |
77 | 75, 59, 60, 76 | syl3anc 1369 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ∈ 𝐵) |
78 | | fveq2 6792 |
. . . . . 6
⊢ (𝑥 = (𝑦(.r‘𝑅)𝑧) → (𝐹‘𝑥) = (𝐹‘(𝑦(.r‘𝑅)𝑧))) |
79 | 78 | oveq1d 7310 |
. . . . 5
⊢ (𝑥 = (𝑦(.r‘𝑅)𝑧) → ((𝐹‘𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(.r‘𝑅)𝑧))↑𝑐𝑆)) |
80 | | ovex 7328 |
. . . . 5
⊢ ((𝐹‘(𝑦(.r‘𝑅)𝑧))↑𝑐𝑆) ∈ V |
81 | 79, 23, 80 | fvmpt 6895 |
. . . 4
⊢ ((𝑦(.r‘𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘(𝑦(.r‘𝑅)𝑧))↑𝑐𝑆)) |
82 | 77, 81 | syl 17 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐺‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘(𝑦(.r‘𝑅)𝑧))↑𝑐𝑆)) |
83 | 59, 55 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐺‘𝑦) = ((𝐹‘𝑦)↑𝑐𝑆)) |
84 | | fveq2 6792 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
85 | 84 | oveq1d 7310 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥)↑𝑐𝑆) = ((𝐹‘𝑧)↑𝑐𝑆)) |
86 | | ovex 7328 |
. . . . . 6
⊢ ((𝐹‘𝑧)↑𝑐𝑆) ∈ V |
87 | 85, 23, 86 | fvmpt 6895 |
. . . . 5
⊢ (𝑧 ∈ 𝐵 → (𝐺‘𝑧) = ((𝐹‘𝑧)↑𝑐𝑆)) |
88 | 60, 87 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐺‘𝑧) = ((𝐹‘𝑧)↑𝑐𝑆)) |
89 | 83, 88 | oveq12d 7313 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐺‘𝑦) · (𝐺‘𝑧)) = (((𝐹‘𝑦)↑𝑐𝑆) · ((𝐹‘𝑧)↑𝑐𝑆))) |
90 | 74, 82, 89 | 3eqtr4d 2783 |
. 2
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐺‘(𝑦(.r‘𝑅)𝑧)) = ((𝐺‘𝑦) · (𝐺‘𝑧))) |
91 | | ringgrp 19816 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
92 | 75, 91 | syl 17 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑅 ∈ Grp) |
93 | | eqid 2733 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
94 | 3, 93 | grpcl 18613 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
95 | 92, 59, 60, 94 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
96 | 1, 3 | abvcl 20112 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) ∈ ℝ) |
97 | 58, 95, 96 | syl2anc 583 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) ∈ ℝ) |
98 | 1, 3 | abvge0 20113 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑦(+g‘𝑅)𝑧))) |
99 | 58, 95, 98 | syl2anc 583 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 0 ≤ (𝐹‘(𝑦(+g‘𝑅)𝑧))) |
100 | 19 | 3ad2ant1 1131 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑆 ∈ ℝ ∧ 0 < 𝑆 ∧ 𝑆 ≤ 1)) |
101 | 100 | simp1d 1140 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑆 ∈ ℝ) |
102 | 97, 99, 101 | recxpcld 25906 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆) ∈ ℝ) |
103 | 65, 69 | readdcld 11032 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘𝑦) + (𝐹‘𝑧)) ∈ ℝ) |
104 | 65, 69, 67, 71 | addge0d 11579 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 0 ≤ ((𝐹‘𝑦) + (𝐹‘𝑧))) |
105 | 103, 104,
101 | recxpcld 25906 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (((𝐹‘𝑦) + (𝐹‘𝑧))↑𝑐𝑆) ∈ ℝ) |
106 | 65, 67, 101 | recxpcld 25906 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘𝑦)↑𝑐𝑆) ∈ ℝ) |
107 | 69, 71, 101 | recxpcld 25906 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘𝑧)↑𝑐𝑆) ∈ ℝ) |
108 | 106, 107 | readdcld 11032 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (((𝐹‘𝑦)↑𝑐𝑆) + ((𝐹‘𝑧)↑𝑐𝑆)) ∈ ℝ) |
109 | 1, 3, 93 | abvtri 20118 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) ≤ ((𝐹‘𝑦) + (𝐹‘𝑧))) |
110 | 58, 59, 60, 109 | syl3anc 1369 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) ≤ ((𝐹‘𝑦) + (𝐹‘𝑧))) |
111 | 100 | simp2d 1141 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 0 < 𝑆) |
112 | 101, 111 | elrpd 12797 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑆 ∈
ℝ+) |
113 | 97, 99, 103, 104, 112 | cxple2d 25910 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘(𝑦(+g‘𝑅)𝑧)) ≤ ((𝐹‘𝑦) + (𝐹‘𝑧)) ↔ ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹‘𝑦) + (𝐹‘𝑧))↑𝑐𝑆))) |
114 | 110, 113 | mpbid 231 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹‘𝑦) + (𝐹‘𝑧))↑𝑐𝑆)) |
115 | 100 | simp3d 1142 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑆 ≤ 1) |
116 | 65, 67, 69, 71, 112, 115 | cxpaddle 25933 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (((𝐹‘𝑦) + (𝐹‘𝑧))↑𝑐𝑆) ≤ (((𝐹‘𝑦)↑𝑐𝑆) + ((𝐹‘𝑧)↑𝑐𝑆))) |
117 | 102, 105,
108, 114, 116 | letrd 11160 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹‘𝑦)↑𝑐𝑆) + ((𝐹‘𝑧)↑𝑐𝑆))) |
118 | | fveq2 6792 |
. . . . . 6
⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝐹‘𝑥) = (𝐹‘(𝑦(+g‘𝑅)𝑧))) |
119 | 118 | oveq1d 7310 |
. . . . 5
⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → ((𝐹‘𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆)) |
120 | | ovex 7328 |
. . . . 5
⊢ ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆) ∈ V |
121 | 119, 23, 120 | fvmpt 6895 |
. . . 4
⊢ ((𝑦(+g‘𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(+g‘𝑅)𝑧)) = ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆)) |
122 | 95, 121 | syl 17 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐺‘(𝑦(+g‘𝑅)𝑧)) = ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆)) |
123 | 83, 88 | oveq12d 7313 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐺‘𝑦) + (𝐺‘𝑧)) = (((𝐹‘𝑦)↑𝑐𝑆) + ((𝐹‘𝑧)↑𝑐𝑆))) |
124 | 117, 122,
123 | 3brtr4d 5109 |
. 2
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐺‘(𝑦(+g‘𝑅)𝑧)) ≤ ((𝐺‘𝑦) + (𝐺‘𝑧))) |
125 | 2, 4, 5, 6, 7, 9, 24, 41, 57, 90, 124 | isabvd 20108 |
1
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝐺 ∈ 𝐴) |