MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvcxp Structured version   Visualization version   GIF version

Theorem abvcxp 27526
Description: Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvcxp.a 𝐴 = (AbsVal‘𝑅)
abvcxp.b 𝐵 = (Base‘𝑅)
abvcxp.f 𝐺 = (𝑥𝐵 ↦ ((𝐹𝑥)↑𝑐𝑆))
Assertion
Ref Expression
abvcxp ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑅   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem abvcxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvcxp.a . . 3 𝐴 = (AbsVal‘𝑅)
21a1i 11 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐴 = (AbsVal‘𝑅))
3 abvcxp.b . . 3 𝐵 = (Base‘𝑅)
43a1i 11 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐵 = (Base‘𝑅))
5 eqidd 2730 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (+g𝑅) = (+g𝑅))
6 eqidd 2730 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (.r𝑅) = (.r𝑅))
7 eqidd 2730 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0g𝑅) = (0g𝑅))
81abvrcl 20722 . . 3 (𝐹𝐴𝑅 ∈ Ring)
98adantr 480 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑅 ∈ Ring)
101, 3abvcl 20725 . . . . 5 ((𝐹𝐴𝑥𝐵) → (𝐹𝑥) ∈ ℝ)
1110adantlr 715 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ ℝ)
121, 3abvge0 20726 . . . . 5 ((𝐹𝐴𝑥𝐵) → 0 ≤ (𝐹𝑥))
1312adantlr 715 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → 0 ≤ (𝐹𝑥))
14 simpr 484 . . . . . . 7 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ (0(,]1))
15 0xr 11221 . . . . . . . 8 0 ∈ ℝ*
16 1re 11174 . . . . . . . 8 1 ∈ ℝ
17 elioc2 13370 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1)))
1815, 16, 17mp2an 692 . . . . . . 7 (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
1914, 18sylib 218 . . . . . 6 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
2019simp1d 1142 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℝ)
2120adantr 480 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → 𝑆 ∈ ℝ)
2211, 13, 21recxpcld 26632 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → ((𝐹𝑥)↑𝑐𝑆) ∈ ℝ)
23 abvcxp.f . . 3 𝐺 = (𝑥𝐵 ↦ ((𝐹𝑥)↑𝑐𝑆))
2422, 23fmptd 7086 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺:𝐵⟶ℝ)
25 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
263, 25ring0cl 20176 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
279, 26syl 17 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0g𝑅) ∈ 𝐵)
28 fveq2 6858 . . . . . 6 (𝑥 = (0g𝑅) → (𝐹𝑥) = (𝐹‘(0g𝑅)))
2928oveq1d 7402 . . . . 5 (𝑥 = (0g𝑅) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
30 ovex 7420 . . . . 5 ((𝐹‘(0g𝑅))↑𝑐𝑆) ∈ V
3129, 23, 30fvmpt 6968 . . . 4 ((0g𝑅) ∈ 𝐵 → (𝐺‘(0g𝑅)) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
3227, 31syl 17 . . 3 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐺‘(0g𝑅)) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
331, 25abv0 20732 . . . . . 6 (𝐹𝐴 → (𝐹‘(0g𝑅)) = 0)
3433adantr 480 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐹‘(0g𝑅)) = 0)
3534oveq1d 7402 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → ((𝐹‘(0g𝑅))↑𝑐𝑆) = (0↑𝑐𝑆))
3620recnd 11202 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℂ)
3719simp2d 1143 . . . . . 6 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 0 < 𝑆)
3837gt0ne0d 11742 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ≠ 0)
3936, 380cxpd 26619 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0↑𝑐𝑆) = 0)
4035, 39eqtrd 2764 . . 3 ((𝐹𝐴𝑆 ∈ (0(,]1)) → ((𝐹‘(0g𝑅))↑𝑐𝑆) = 0)
4132, 40eqtrd 2764 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐺‘(0g𝑅)) = 0)
42 simp1l 1198 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝐹𝐴)
43 simp2 1137 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝑦𝐵)
441, 3abvcl 20725 . . . . . . 7 ((𝐹𝐴𝑦𝐵) → (𝐹𝑦) ∈ ℝ)
4542, 43, 44syl2anc 584 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐹𝑦) ∈ ℝ)
461, 3, 25abvgt0 20729 . . . . . . 7 ((𝐹𝐴𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐹𝑦))
47463adant1r 1178 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐹𝑦))
4845, 47elrpd 12992 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐹𝑦) ∈ ℝ+)
49203ad2ant1 1133 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝑆 ∈ ℝ)
5048, 49rpcxpcld 26642 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → ((𝐹𝑦)↑𝑐𝑆) ∈ ℝ+)
5150rpgt0d 12998 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < ((𝐹𝑦)↑𝑐𝑆))
52 fveq2 6858 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5352oveq1d 7402 . . . . 5 (𝑥 = 𝑦 → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹𝑦)↑𝑐𝑆))
54 ovex 7420 . . . . 5 ((𝐹𝑦)↑𝑐𝑆) ∈ V
5553, 23, 54fvmpt 6968 . . . 4 (𝑦𝐵 → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
5643, 55syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
5751, 56breqtrrd 5135 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐺𝑦))
58 simp1l 1198 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝐹𝐴)
59 simp2l 1200 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑦𝐵)
60 simp3l 1202 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑧𝐵)
61 eqid 2729 . . . . . . 7 (.r𝑅) = (.r𝑅)
621, 3, 61abvmul 20730 . . . . . 6 ((𝐹𝐴𝑦𝐵𝑧𝐵) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
6358, 59, 60, 62syl3anc 1373 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
6463oveq1d 7402 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) = (((𝐹𝑦) · (𝐹𝑧))↑𝑐𝑆))
6558, 59, 44syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹𝑦) ∈ ℝ)
661, 3abvge0 20726 . . . . . 6 ((𝐹𝐴𝑦𝐵) → 0 ≤ (𝐹𝑦))
6758, 59, 66syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹𝑦))
681, 3abvcl 20725 . . . . . 6 ((𝐹𝐴𝑧𝐵) → (𝐹𝑧) ∈ ℝ)
6958, 60, 68syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹𝑧) ∈ ℝ)
701, 3abvge0 20726 . . . . . 6 ((𝐹𝐴𝑧𝐵) → 0 ≤ (𝐹𝑧))
7158, 60, 70syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹𝑧))
72363ad2ant1 1133 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℂ)
7365, 67, 69, 71, 72mulcxpd 26637 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) · (𝐹𝑧))↑𝑐𝑆) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
7464, 73eqtrd 2764 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
7593ad2ant1 1133 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑅 ∈ Ring)
763, 61ringcl 20159 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(.r𝑅)𝑧) ∈ 𝐵)
7775, 59, 60, 76syl3anc 1373 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑦(.r𝑅)𝑧) ∈ 𝐵)
78 fveq2 6858 . . . . . 6 (𝑥 = (𝑦(.r𝑅)𝑧) → (𝐹𝑥) = (𝐹‘(𝑦(.r𝑅)𝑧)))
7978oveq1d 7402 . . . . 5 (𝑥 = (𝑦(.r𝑅)𝑧) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
80 ovex 7420 . . . . 5 ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) ∈ V
8179, 23, 80fvmpt 6968 . . . 4 ((𝑦(.r𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
8277, 81syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
8359, 55syl 17 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
84 fveq2 6858 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
8584oveq1d 7402 . . . . . 6 (𝑥 = 𝑧 → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹𝑧)↑𝑐𝑆))
86 ovex 7420 . . . . . 6 ((𝐹𝑧)↑𝑐𝑆) ∈ V
8785, 23, 86fvmpt 6968 . . . . 5 (𝑧𝐵 → (𝐺𝑧) = ((𝐹𝑧)↑𝑐𝑆))
8860, 87syl 17 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺𝑧) = ((𝐹𝑧)↑𝑐𝑆))
8983, 88oveq12d 7405 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐺𝑦) · (𝐺𝑧)) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
9074, 82, 893eqtr4d 2774 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
91 ringgrp 20147 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
9275, 91syl 17 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑅 ∈ Grp)
93 eqid 2729 . . . . . . . 8 (+g𝑅) = (+g𝑅)
943, 93grpcl 18873 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
9592, 59, 60, 94syl3anc 1373 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
961, 3abvcl 20725 . . . . . 6 ((𝐹𝐴 ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵) → (𝐹‘(𝑦(+g𝑅)𝑧)) ∈ ℝ)
9758, 95, 96syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(+g𝑅)𝑧)) ∈ ℝ)
981, 3abvge0 20726 . . . . . 6 ((𝐹𝐴 ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑦(+g𝑅)𝑧)))
9958, 95, 98syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹‘(𝑦(+g𝑅)𝑧)))
100193ad2ant1 1133 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
101100simp1d 1142 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℝ)
10297, 99, 101recxpcld 26632 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ∈ ℝ)
10365, 69readdcld 11203 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑦) + (𝐹𝑧)) ∈ ℝ)
10465, 69, 67, 71addge0d 11754 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ ((𝐹𝑦) + (𝐹𝑧)))
105103, 104, 101recxpcld 26632 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆) ∈ ℝ)
10665, 67, 101recxpcld 26632 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑦)↑𝑐𝑆) ∈ ℝ)
10769, 71, 101recxpcld 26632 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑧)↑𝑐𝑆) ∈ ℝ)
108106, 107readdcld 11203 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)) ∈ ℝ)
1091, 3, 93abvtri 20731 . . . . . 6 ((𝐹𝐴𝑦𝐵𝑧𝐵) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
11058, 59, 60, 109syl3anc 1373 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
111100simp2d 1143 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 < 𝑆)
112101, 111elrpd 12992 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℝ+)
11397, 99, 103, 104, 112cxple2d 26636 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)) ↔ ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆)))
114110, 113mpbid 232 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆))
115100simp3d 1144 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ≤ 1)
11665, 67, 69, 71, 112, 115cxpaddle 26662 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
117102, 105, 108, 114, 116letrd 11331 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
118 fveq2 6858 . . . . . 6 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝐹𝑥) = (𝐹‘(𝑦(+g𝑅)𝑧)))
119118oveq1d 7402 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
120 ovex 7420 . . . . 5 ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ∈ V
121119, 23, 120fvmpt 6968 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(+g𝑅)𝑧)) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
12295, 121syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(+g𝑅)𝑧)) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
12383, 88oveq12d 7405 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐺𝑦) + (𝐺𝑧)) = (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
124117, 122, 1233brtr4d 5139 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐺𝑦) + (𝐺𝑧)))
1252, 4, 5, 6, 7, 9, 24, 41, 57, 90, 124isabvd 20721 1 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  (,]cioc 13307  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402  Grpcgrp 18865  Ringcrg 20142  AbsValcabv 20717  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-abv 20718  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466
This theorem is referenced by:  ostth2  27548  ostth  27550
  Copyright terms: Public domain W3C validator