MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvcxp Structured version   Visualization version   GIF version

Theorem abvcxp 26963
Description: Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvcxp.a 𝐴 = (AbsVal‘𝑅)
abvcxp.b 𝐵 = (Base‘𝑅)
abvcxp.f 𝐺 = (𝑥𝐵 ↦ ((𝐹𝑥)↑𝑐𝑆))
Assertion
Ref Expression
abvcxp ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑅   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem abvcxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvcxp.a . . 3 𝐴 = (AbsVal‘𝑅)
21a1i 11 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐴 = (AbsVal‘𝑅))
3 abvcxp.b . . 3 𝐵 = (Base‘𝑅)
43a1i 11 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐵 = (Base‘𝑅))
5 eqidd 2737 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (+g𝑅) = (+g𝑅))
6 eqidd 2737 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (.r𝑅) = (.r𝑅))
7 eqidd 2737 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0g𝑅) = (0g𝑅))
81abvrcl 20280 . . 3 (𝐹𝐴𝑅 ∈ Ring)
98adantr 481 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑅 ∈ Ring)
101, 3abvcl 20283 . . . . 5 ((𝐹𝐴𝑥𝐵) → (𝐹𝑥) ∈ ℝ)
1110adantlr 713 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ ℝ)
121, 3abvge0 20284 . . . . 5 ((𝐹𝐴𝑥𝐵) → 0 ≤ (𝐹𝑥))
1312adantlr 713 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → 0 ≤ (𝐹𝑥))
14 simpr 485 . . . . . . 7 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ (0(,]1))
15 0xr 11202 . . . . . . . 8 0 ∈ ℝ*
16 1re 11155 . . . . . . . 8 1 ∈ ℝ
17 elioc2 13327 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1)))
1815, 16, 17mp2an 690 . . . . . . 7 (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
1914, 18sylib 217 . . . . . 6 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
2019simp1d 1142 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℝ)
2120adantr 481 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → 𝑆 ∈ ℝ)
2211, 13, 21recxpcld 26078 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → ((𝐹𝑥)↑𝑐𝑆) ∈ ℝ)
23 abvcxp.f . . 3 𝐺 = (𝑥𝐵 ↦ ((𝐹𝑥)↑𝑐𝑆))
2422, 23fmptd 7062 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺:𝐵⟶ℝ)
25 eqid 2736 . . . . . 6 (0g𝑅) = (0g𝑅)
263, 25ring0cl 19990 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
279, 26syl 17 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0g𝑅) ∈ 𝐵)
28 fveq2 6842 . . . . . 6 (𝑥 = (0g𝑅) → (𝐹𝑥) = (𝐹‘(0g𝑅)))
2928oveq1d 7372 . . . . 5 (𝑥 = (0g𝑅) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
30 ovex 7390 . . . . 5 ((𝐹‘(0g𝑅))↑𝑐𝑆) ∈ V
3129, 23, 30fvmpt 6948 . . . 4 ((0g𝑅) ∈ 𝐵 → (𝐺‘(0g𝑅)) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
3227, 31syl 17 . . 3 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐺‘(0g𝑅)) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
331, 25abv0 20290 . . . . . 6 (𝐹𝐴 → (𝐹‘(0g𝑅)) = 0)
3433adantr 481 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐹‘(0g𝑅)) = 0)
3534oveq1d 7372 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → ((𝐹‘(0g𝑅))↑𝑐𝑆) = (0↑𝑐𝑆))
3620recnd 11183 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℂ)
3719simp2d 1143 . . . . . 6 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 0 < 𝑆)
3837gt0ne0d 11719 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ≠ 0)
3936, 380cxpd 26065 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0↑𝑐𝑆) = 0)
4035, 39eqtrd 2776 . . 3 ((𝐹𝐴𝑆 ∈ (0(,]1)) → ((𝐹‘(0g𝑅))↑𝑐𝑆) = 0)
4132, 40eqtrd 2776 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐺‘(0g𝑅)) = 0)
42 simp1l 1197 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝐹𝐴)
43 simp2 1137 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝑦𝐵)
441, 3abvcl 20283 . . . . . . 7 ((𝐹𝐴𝑦𝐵) → (𝐹𝑦) ∈ ℝ)
4542, 43, 44syl2anc 584 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐹𝑦) ∈ ℝ)
461, 3, 25abvgt0 20287 . . . . . . 7 ((𝐹𝐴𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐹𝑦))
47463adant1r 1177 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐹𝑦))
4845, 47elrpd 12954 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐹𝑦) ∈ ℝ+)
49203ad2ant1 1133 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝑆 ∈ ℝ)
5048, 49rpcxpcld 26087 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → ((𝐹𝑦)↑𝑐𝑆) ∈ ℝ+)
5150rpgt0d 12960 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < ((𝐹𝑦)↑𝑐𝑆))
52 fveq2 6842 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5352oveq1d 7372 . . . . 5 (𝑥 = 𝑦 → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹𝑦)↑𝑐𝑆))
54 ovex 7390 . . . . 5 ((𝐹𝑦)↑𝑐𝑆) ∈ V
5553, 23, 54fvmpt 6948 . . . 4 (𝑦𝐵 → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
5643, 55syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
5751, 56breqtrrd 5133 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐺𝑦))
58 simp1l 1197 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝐹𝐴)
59 simp2l 1199 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑦𝐵)
60 simp3l 1201 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑧𝐵)
61 eqid 2736 . . . . . . 7 (.r𝑅) = (.r𝑅)
621, 3, 61abvmul 20288 . . . . . 6 ((𝐹𝐴𝑦𝐵𝑧𝐵) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
6358, 59, 60, 62syl3anc 1371 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
6463oveq1d 7372 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) = (((𝐹𝑦) · (𝐹𝑧))↑𝑐𝑆))
6558, 59, 44syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹𝑦) ∈ ℝ)
661, 3abvge0 20284 . . . . . 6 ((𝐹𝐴𝑦𝐵) → 0 ≤ (𝐹𝑦))
6758, 59, 66syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹𝑦))
681, 3abvcl 20283 . . . . . 6 ((𝐹𝐴𝑧𝐵) → (𝐹𝑧) ∈ ℝ)
6958, 60, 68syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹𝑧) ∈ ℝ)
701, 3abvge0 20284 . . . . . 6 ((𝐹𝐴𝑧𝐵) → 0 ≤ (𝐹𝑧))
7158, 60, 70syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹𝑧))
72363ad2ant1 1133 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℂ)
7365, 67, 69, 71, 72mulcxpd 26083 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) · (𝐹𝑧))↑𝑐𝑆) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
7464, 73eqtrd 2776 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
7593ad2ant1 1133 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑅 ∈ Ring)
763, 61ringcl 19981 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(.r𝑅)𝑧) ∈ 𝐵)
7775, 59, 60, 76syl3anc 1371 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑦(.r𝑅)𝑧) ∈ 𝐵)
78 fveq2 6842 . . . . . 6 (𝑥 = (𝑦(.r𝑅)𝑧) → (𝐹𝑥) = (𝐹‘(𝑦(.r𝑅)𝑧)))
7978oveq1d 7372 . . . . 5 (𝑥 = (𝑦(.r𝑅)𝑧) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
80 ovex 7390 . . . . 5 ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) ∈ V
8179, 23, 80fvmpt 6948 . . . 4 ((𝑦(.r𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
8277, 81syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
8359, 55syl 17 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
84 fveq2 6842 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
8584oveq1d 7372 . . . . . 6 (𝑥 = 𝑧 → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹𝑧)↑𝑐𝑆))
86 ovex 7390 . . . . . 6 ((𝐹𝑧)↑𝑐𝑆) ∈ V
8785, 23, 86fvmpt 6948 . . . . 5 (𝑧𝐵 → (𝐺𝑧) = ((𝐹𝑧)↑𝑐𝑆))
8860, 87syl 17 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺𝑧) = ((𝐹𝑧)↑𝑐𝑆))
8983, 88oveq12d 7375 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐺𝑦) · (𝐺𝑧)) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
9074, 82, 893eqtr4d 2786 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
91 ringgrp 19969 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
9275, 91syl 17 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑅 ∈ Grp)
93 eqid 2736 . . . . . . . 8 (+g𝑅) = (+g𝑅)
943, 93grpcl 18756 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
9592, 59, 60, 94syl3anc 1371 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
961, 3abvcl 20283 . . . . . 6 ((𝐹𝐴 ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵) → (𝐹‘(𝑦(+g𝑅)𝑧)) ∈ ℝ)
9758, 95, 96syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(+g𝑅)𝑧)) ∈ ℝ)
981, 3abvge0 20284 . . . . . 6 ((𝐹𝐴 ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑦(+g𝑅)𝑧)))
9958, 95, 98syl2anc 584 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹‘(𝑦(+g𝑅)𝑧)))
100193ad2ant1 1133 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
101100simp1d 1142 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℝ)
10297, 99, 101recxpcld 26078 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ∈ ℝ)
10365, 69readdcld 11184 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑦) + (𝐹𝑧)) ∈ ℝ)
10465, 69, 67, 71addge0d 11731 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ ((𝐹𝑦) + (𝐹𝑧)))
105103, 104, 101recxpcld 26078 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆) ∈ ℝ)
10665, 67, 101recxpcld 26078 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑦)↑𝑐𝑆) ∈ ℝ)
10769, 71, 101recxpcld 26078 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑧)↑𝑐𝑆) ∈ ℝ)
108106, 107readdcld 11184 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)) ∈ ℝ)
1091, 3, 93abvtri 20289 . . . . . 6 ((𝐹𝐴𝑦𝐵𝑧𝐵) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
11058, 59, 60, 109syl3anc 1371 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
111100simp2d 1143 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 < 𝑆)
112101, 111elrpd 12954 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℝ+)
11397, 99, 103, 104, 112cxple2d 26082 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)) ↔ ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆)))
114110, 113mpbid 231 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆))
115100simp3d 1144 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ≤ 1)
11665, 67, 69, 71, 112, 115cxpaddle 26105 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
117102, 105, 108, 114, 116letrd 11312 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
118 fveq2 6842 . . . . . 6 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝐹𝑥) = (𝐹‘(𝑦(+g𝑅)𝑧)))
119118oveq1d 7372 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
120 ovex 7390 . . . . 5 ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ∈ V
121119, 23, 120fvmpt 6948 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(+g𝑅)𝑧)) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
12295, 121syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(+g𝑅)𝑧)) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
12383, 88oveq12d 7375 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐺𝑦) + (𝐺𝑧)) = (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
124117, 122, 1233brtr4d 5137 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐺𝑦) + (𝐺𝑧)))
1252, 4, 5, 6, 7, 9, 24, 41, 57, 90, 124isabvd 20279 1 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  (,]cioc 13265  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  0gc0g 17321  Grpcgrp 18748  Ringcrg 19964  AbsValcabv 20275  𝑐ccxp 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-mgp 19897  df-ring 19966  df-abv 20276  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913
This theorem is referenced by:  ostth2  26985  ostth  26987
  Copyright terms: Public domain W3C validator