| Step | Hyp | Ref
| Expression |
| 1 | | abvcxp.a |
. . 3
⊢ 𝐴 = (AbsVal‘𝑅) |
| 2 | 1 | a1i 11 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝐴 = (AbsVal‘𝑅)) |
| 3 | | abvcxp.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
| 4 | 3 | a1i 11 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝐵 = (Base‘𝑅)) |
| 5 | | eqidd 2738 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) →
(+g‘𝑅) =
(+g‘𝑅)) |
| 6 | | eqidd 2738 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) →
(.r‘𝑅) =
(.r‘𝑅)) |
| 7 | | eqidd 2738 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) →
(0g‘𝑅) =
(0g‘𝑅)) |
| 8 | 1 | abvrcl 20814 |
. . 3
⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| 9 | 8 | adantr 480 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝑅 ∈ Ring) |
| 10 | 1, 3 | abvcl 20817 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) ∈ ℝ) |
| 11 | 10 | adantlr 715 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) ∈ ℝ) |
| 12 | 1, 3 | abvge0 20818 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 0 ≤ (𝐹‘𝑥)) |
| 13 | 12 | adantlr 715 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑥 ∈ 𝐵) → 0 ≤ (𝐹‘𝑥)) |
| 14 | | simpr 484 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝑆 ∈ (0(,]1)) |
| 15 | | 0xr 11308 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
| 16 | | 1re 11261 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
| 17 | | elioc2 13450 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 < 𝑆 ∧ 𝑆 ≤ 1))) |
| 18 | 15, 16, 17 | mp2an 692 |
. . . . . . 7
⊢ (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 <
𝑆 ∧ 𝑆 ≤ 1)) |
| 19 | 14, 18 | sylib 218 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → (𝑆 ∈ ℝ ∧ 0 < 𝑆 ∧ 𝑆 ≤ 1)) |
| 20 | 19 | simp1d 1143 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℝ) |
| 21 | 20 | adantr 480 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ ℝ) |
| 22 | 11, 13, 21 | recxpcld 26765 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑥 ∈ 𝐵) → ((𝐹‘𝑥)↑𝑐𝑆) ∈ ℝ) |
| 23 | | abvcxp.f |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ ((𝐹‘𝑥)↑𝑐𝑆)) |
| 24 | 22, 23 | fmptd 7134 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝐺:𝐵⟶ℝ) |
| 25 | | eqid 2737 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 26 | 3, 25 | ring0cl 20264 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ 𝐵) |
| 27 | 9, 26 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) →
(0g‘𝑅)
∈ 𝐵) |
| 28 | | fveq2 6906 |
. . . . . 6
⊢ (𝑥 = (0g‘𝑅) → (𝐹‘𝑥) = (𝐹‘(0g‘𝑅))) |
| 29 | 28 | oveq1d 7446 |
. . . . 5
⊢ (𝑥 = (0g‘𝑅) → ((𝐹‘𝑥)↑𝑐𝑆) = ((𝐹‘(0g‘𝑅))↑𝑐𝑆)) |
| 30 | | ovex 7464 |
. . . . 5
⊢ ((𝐹‘(0g‘𝑅))↑𝑐𝑆) ∈ V |
| 31 | 29, 23, 30 | fvmpt 7016 |
. . . 4
⊢
((0g‘𝑅) ∈ 𝐵 → (𝐺‘(0g‘𝑅)) = ((𝐹‘(0g‘𝑅))↑𝑐𝑆)) |
| 32 | 27, 31 | syl 17 |
. . 3
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → (𝐺‘(0g‘𝑅)) = ((𝐹‘(0g‘𝑅))↑𝑐𝑆)) |
| 33 | 1, 25 | abv0 20824 |
. . . . . 6
⊢ (𝐹 ∈ 𝐴 → (𝐹‘(0g‘𝑅)) = 0) |
| 34 | 33 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → (𝐹‘(0g‘𝑅)) = 0) |
| 35 | 34 | oveq1d 7446 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → ((𝐹‘(0g‘𝑅))↑𝑐𝑆) =
(0↑𝑐𝑆)) |
| 36 | 20 | recnd 11289 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℂ) |
| 37 | 19 | simp2d 1144 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 0 < 𝑆) |
| 38 | 37 | gt0ne0d 11827 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝑆 ≠ 0) |
| 39 | 36, 38 | 0cxpd 26752 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) →
(0↑𝑐𝑆) = 0) |
| 40 | 35, 39 | eqtrd 2777 |
. . 3
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → ((𝐹‘(0g‘𝑅))↑𝑐𝑆) = 0) |
| 41 | 32, 40 | eqtrd 2777 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → (𝐺‘(0g‘𝑅)) = 0) |
| 42 | | simp1l 1198 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 𝐹 ∈ 𝐴) |
| 43 | | simp2 1138 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 𝑦 ∈ 𝐵) |
| 44 | 1, 3 | abvcl 20817 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ ℝ) |
| 45 | 42, 43, 44 | syl2anc 584 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → (𝐹‘𝑦) ∈ ℝ) |
| 46 | 1, 3, 25 | abvgt0 20821 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 0 < (𝐹‘𝑦)) |
| 47 | 46 | 3adant1r 1178 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 0 < (𝐹‘𝑦)) |
| 48 | 45, 47 | elrpd 13074 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → (𝐹‘𝑦) ∈
ℝ+) |
| 49 | 20 | 3ad2ant1 1134 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 𝑆 ∈ ℝ) |
| 50 | 48, 49 | rpcxpcld 26775 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → ((𝐹‘𝑦)↑𝑐𝑆) ∈
ℝ+) |
| 51 | 50 | rpgt0d 13080 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 0 < ((𝐹‘𝑦)↑𝑐𝑆)) |
| 52 | | fveq2 6906 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 53 | 52 | oveq1d 7446 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥)↑𝑐𝑆) = ((𝐹‘𝑦)↑𝑐𝑆)) |
| 54 | | ovex 7464 |
. . . . 5
⊢ ((𝐹‘𝑦)↑𝑐𝑆) ∈ V |
| 55 | 53, 23, 54 | fvmpt 7016 |
. . . 4
⊢ (𝑦 ∈ 𝐵 → (𝐺‘𝑦) = ((𝐹‘𝑦)↑𝑐𝑆)) |
| 56 | 43, 55 | syl 17 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → (𝐺‘𝑦) = ((𝐹‘𝑦)↑𝑐𝑆)) |
| 57 | 51, 56 | breqtrrd 5171 |
. 2
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) → 0 < (𝐺‘𝑦)) |
| 58 | | simp1l 1198 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝐹 ∈ 𝐴) |
| 59 | | simp2l 1200 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑦 ∈ 𝐵) |
| 60 | | simp3l 1202 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑧 ∈ 𝐵) |
| 61 | | eqid 2737 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 62 | 1, 3, 61 | abvmul 20822 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦) · (𝐹‘𝑧))) |
| 63 | 58, 59, 60, 62 | syl3anc 1373 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦) · (𝐹‘𝑧))) |
| 64 | 63 | oveq1d 7446 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘(𝑦(.r‘𝑅)𝑧))↑𝑐𝑆) = (((𝐹‘𝑦) · (𝐹‘𝑧))↑𝑐𝑆)) |
| 65 | 58, 59, 44 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐹‘𝑦) ∈ ℝ) |
| 66 | 1, 3 | abvge0 20818 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 0 ≤ (𝐹‘𝑦)) |
| 67 | 58, 59, 66 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 0 ≤ (𝐹‘𝑦)) |
| 68 | 1, 3 | abvcl 20817 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (𝐹‘𝑧) ∈ ℝ) |
| 69 | 58, 60, 68 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐹‘𝑧) ∈ ℝ) |
| 70 | 1, 3 | abvge0 20818 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 0 ≤ (𝐹‘𝑧)) |
| 71 | 58, 60, 70 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 0 ≤ (𝐹‘𝑧)) |
| 72 | 36 | 3ad2ant1 1134 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑆 ∈ ℂ) |
| 73 | 65, 67, 69, 71, 72 | mulcxpd 26770 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (((𝐹‘𝑦) · (𝐹‘𝑧))↑𝑐𝑆) = (((𝐹‘𝑦)↑𝑐𝑆) · ((𝐹‘𝑧)↑𝑐𝑆))) |
| 74 | 64, 73 | eqtrd 2777 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘(𝑦(.r‘𝑅)𝑧))↑𝑐𝑆) = (((𝐹‘𝑦)↑𝑐𝑆) · ((𝐹‘𝑧)↑𝑐𝑆))) |
| 75 | 9 | 3ad2ant1 1134 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑅 ∈ Ring) |
| 76 | 3, 61 | ringcl 20247 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(.r‘𝑅)𝑧) ∈ 𝐵) |
| 77 | 75, 59, 60, 76 | syl3anc 1373 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(.r‘𝑅)𝑧) ∈ 𝐵) |
| 78 | | fveq2 6906 |
. . . . . 6
⊢ (𝑥 = (𝑦(.r‘𝑅)𝑧) → (𝐹‘𝑥) = (𝐹‘(𝑦(.r‘𝑅)𝑧))) |
| 79 | 78 | oveq1d 7446 |
. . . . 5
⊢ (𝑥 = (𝑦(.r‘𝑅)𝑧) → ((𝐹‘𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(.r‘𝑅)𝑧))↑𝑐𝑆)) |
| 80 | | ovex 7464 |
. . . . 5
⊢ ((𝐹‘(𝑦(.r‘𝑅)𝑧))↑𝑐𝑆) ∈ V |
| 81 | 79, 23, 80 | fvmpt 7016 |
. . . 4
⊢ ((𝑦(.r‘𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘(𝑦(.r‘𝑅)𝑧))↑𝑐𝑆)) |
| 82 | 77, 81 | syl 17 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐺‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘(𝑦(.r‘𝑅)𝑧))↑𝑐𝑆)) |
| 83 | 59, 55 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐺‘𝑦) = ((𝐹‘𝑦)↑𝑐𝑆)) |
| 84 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 85 | 84 | oveq1d 7446 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥)↑𝑐𝑆) = ((𝐹‘𝑧)↑𝑐𝑆)) |
| 86 | | ovex 7464 |
. . . . . 6
⊢ ((𝐹‘𝑧)↑𝑐𝑆) ∈ V |
| 87 | 85, 23, 86 | fvmpt 7016 |
. . . . 5
⊢ (𝑧 ∈ 𝐵 → (𝐺‘𝑧) = ((𝐹‘𝑧)↑𝑐𝑆)) |
| 88 | 60, 87 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐺‘𝑧) = ((𝐹‘𝑧)↑𝑐𝑆)) |
| 89 | 83, 88 | oveq12d 7449 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐺‘𝑦) · (𝐺‘𝑧)) = (((𝐹‘𝑦)↑𝑐𝑆) · ((𝐹‘𝑧)↑𝑐𝑆))) |
| 90 | 74, 82, 89 | 3eqtr4d 2787 |
. 2
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐺‘(𝑦(.r‘𝑅)𝑧)) = ((𝐺‘𝑦) · (𝐺‘𝑧))) |
| 91 | | ringgrp 20235 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 92 | 75, 91 | syl 17 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑅 ∈ Grp) |
| 93 | | eqid 2737 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 94 | 3, 93 | grpcl 18959 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
| 95 | 92, 59, 60, 94 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
| 96 | 1, 3 | abvcl 20817 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) ∈ ℝ) |
| 97 | 58, 95, 96 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) ∈ ℝ) |
| 98 | 1, 3 | abvge0 20818 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑦(+g‘𝑅)𝑧))) |
| 99 | 58, 95, 98 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 0 ≤ (𝐹‘(𝑦(+g‘𝑅)𝑧))) |
| 100 | 19 | 3ad2ant1 1134 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝑆 ∈ ℝ ∧ 0 < 𝑆 ∧ 𝑆 ≤ 1)) |
| 101 | 100 | simp1d 1143 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑆 ∈ ℝ) |
| 102 | 97, 99, 101 | recxpcld 26765 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆) ∈ ℝ) |
| 103 | 65, 69 | readdcld 11290 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘𝑦) + (𝐹‘𝑧)) ∈ ℝ) |
| 104 | 65, 69, 67, 71 | addge0d 11839 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 0 ≤ ((𝐹‘𝑦) + (𝐹‘𝑧))) |
| 105 | 103, 104,
101 | recxpcld 26765 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (((𝐹‘𝑦) + (𝐹‘𝑧))↑𝑐𝑆) ∈ ℝ) |
| 106 | 65, 67, 101 | recxpcld 26765 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘𝑦)↑𝑐𝑆) ∈ ℝ) |
| 107 | 69, 71, 101 | recxpcld 26765 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘𝑧)↑𝑐𝑆) ∈ ℝ) |
| 108 | 106, 107 | readdcld 11290 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (((𝐹‘𝑦)↑𝑐𝑆) + ((𝐹‘𝑧)↑𝑐𝑆)) ∈ ℝ) |
| 109 | 1, 3, 93 | abvtri 20823 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) ≤ ((𝐹‘𝑦) + (𝐹‘𝑧))) |
| 110 | 58, 59, 60, 109 | syl3anc 1373 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) ≤ ((𝐹‘𝑦) + (𝐹‘𝑧))) |
| 111 | 100 | simp2d 1144 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 0 < 𝑆) |
| 112 | 101, 111 | elrpd 13074 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑆 ∈
ℝ+) |
| 113 | 97, 99, 103, 104, 112 | cxple2d 26769 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘(𝑦(+g‘𝑅)𝑧)) ≤ ((𝐹‘𝑦) + (𝐹‘𝑧)) ↔ ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹‘𝑦) + (𝐹‘𝑧))↑𝑐𝑆))) |
| 114 | 110, 113 | mpbid 232 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹‘𝑦) + (𝐹‘𝑧))↑𝑐𝑆)) |
| 115 | 100 | simp3d 1145 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → 𝑆 ≤ 1) |
| 116 | 65, 67, 69, 71, 112, 115 | cxpaddle 26795 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (((𝐹‘𝑦) + (𝐹‘𝑧))↑𝑐𝑆) ≤ (((𝐹‘𝑦)↑𝑐𝑆) + ((𝐹‘𝑧)↑𝑐𝑆))) |
| 117 | 102, 105,
108, 114, 116 | letrd 11418 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹‘𝑦)↑𝑐𝑆) + ((𝐹‘𝑧)↑𝑐𝑆))) |
| 118 | | fveq2 6906 |
. . . . . 6
⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝐹‘𝑥) = (𝐹‘(𝑦(+g‘𝑅)𝑧))) |
| 119 | 118 | oveq1d 7446 |
. . . . 5
⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → ((𝐹‘𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆)) |
| 120 | | ovex 7464 |
. . . . 5
⊢ ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆) ∈ V |
| 121 | 119, 23, 120 | fvmpt 7016 |
. . . 4
⊢ ((𝑦(+g‘𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(+g‘𝑅)𝑧)) = ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆)) |
| 122 | 95, 121 | syl 17 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐺‘(𝑦(+g‘𝑅)𝑧)) = ((𝐹‘(𝑦(+g‘𝑅)𝑧))↑𝑐𝑆)) |
| 123 | 83, 88 | oveq12d 7449 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → ((𝐺‘𝑦) + (𝐺‘𝑧)) = (((𝐹‘𝑦)↑𝑐𝑆) + ((𝐹‘𝑧)↑𝑐𝑆))) |
| 124 | 117, 122,
123 | 3brtr4d 5175 |
. 2
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ (0g‘𝑅)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ (0g‘𝑅))) → (𝐺‘(𝑦(+g‘𝑅)𝑧)) ≤ ((𝐺‘𝑦) + (𝐺‘𝑧))) |
| 125 | 2, 4, 5, 6, 7, 9, 24, 41, 57, 90, 124 | isabvd 20813 |
1
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝐺 ∈ 𝐴) |