Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0met | Structured version Visualization version GIF version |
Description: The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
0met | ⊢ ∅ ∈ (Met‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5180 | . 2 ⊢ ∅ ∈ V | |
2 | f0 6549 | . . 3 ⊢ ∅:∅⟶ℝ | |
3 | xp0 5991 | . . . 4 ⊢ (∅ × ∅) = ∅ | |
4 | 3 | feq2i 6494 | . . 3 ⊢ (∅:(∅ × ∅)⟶ℝ ↔ ∅:∅⟶ℝ) |
5 | 2, 4 | mpbir 234 | . 2 ⊢ ∅:(∅ × ∅)⟶ℝ |
6 | noel 4232 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
7 | 6 | pm2.21i 119 | . . 3 ⊢ (𝑥 ∈ ∅ → ((𝑥∅𝑦) = 0 ↔ 𝑥 = 𝑦)) |
8 | 7 | adantr 484 | . 2 ⊢ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) → ((𝑥∅𝑦) = 0 ↔ 𝑥 = 𝑦)) |
9 | 6 | pm2.21i 119 | . . 3 ⊢ (𝑥 ∈ ∅ → (𝑥∅𝑦) ≤ ((𝑧∅𝑥) + (𝑧∅𝑦))) |
10 | 9 | 3ad2ant1 1130 | . 2 ⊢ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) → (𝑥∅𝑦) ≤ ((𝑧∅𝑥) + (𝑧∅𝑦))) |
11 | 1, 5, 8, 10 | ismeti 23032 | 1 ⊢ ∅ ∈ (Met‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1538 ∈ wcel 2111 ∅c0 4227 class class class wbr 5035 × cxp 5525 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 ℝcr 10579 0cc0 10580 + caddc 10583 ≤ cle 10719 Metcmet 20157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-map 8423 df-met 20165 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |