Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0met | Structured version Visualization version GIF version |
Description: The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
0met | ⊢ ∅ ∈ (Met‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . 2 ⊢ ∅ ∈ V | |
2 | f0 6639 | . . 3 ⊢ ∅:∅⟶ℝ | |
3 | xp0 6050 | . . . 4 ⊢ (∅ × ∅) = ∅ | |
4 | 3 | feq2i 6576 | . . 3 ⊢ (∅:(∅ × ∅)⟶ℝ ↔ ∅:∅⟶ℝ) |
5 | 2, 4 | mpbir 230 | . 2 ⊢ ∅:(∅ × ∅)⟶ℝ |
6 | noel 4261 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
7 | 6 | pm2.21i 119 | . . 3 ⊢ (𝑥 ∈ ∅ → ((𝑥∅𝑦) = 0 ↔ 𝑥 = 𝑦)) |
8 | 7 | adantr 480 | . 2 ⊢ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) → ((𝑥∅𝑦) = 0 ↔ 𝑥 = 𝑦)) |
9 | 6 | pm2.21i 119 | . . 3 ⊢ (𝑥 ∈ ∅ → (𝑥∅𝑦) ≤ ((𝑧∅𝑥) + (𝑧∅𝑦))) |
10 | 9 | 3ad2ant1 1131 | . 2 ⊢ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) → (𝑥∅𝑦) ≤ ((𝑧∅𝑥) + (𝑧∅𝑦))) |
11 | 1, 5, 8, 10 | ismeti 23386 | 1 ⊢ ∅ ∈ (Met‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∅c0 4253 class class class wbr 5070 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 + caddc 10805 ≤ cle 10941 Metcmet 20496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-met 20504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |