MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0met Structured version   Visualization version   GIF version

Theorem 0met 23735
Description: The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
0met ∅ ∈ (Met‘∅)

Proof of Theorem 0met
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5269 . 2 ∅ ∈ V
2 f0 6728 . . 3 ∅:∅⟶ℝ
3 xp0 6115 . . . 4 (∅ × ∅) = ∅
43feq2i 6665 . . 3 (∅:(∅ × ∅)⟶ℝ ↔ ∅:∅⟶ℝ)
52, 4mpbir 230 . 2 ∅:(∅ × ∅)⟶ℝ
6 noel 4295 . . . 4 ¬ 𝑥 ∈ ∅
76pm2.21i 119 . . 3 (𝑥 ∈ ∅ → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
87adantr 482 . 2 ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
96pm2.21i 119 . . 3 (𝑥 ∈ ∅ → (𝑥𝑦) ≤ ((𝑧𝑥) + (𝑧𝑦)))
1093ad2ant1 1134 . 2 ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) → (𝑥𝑦) ≤ ((𝑧𝑥) + (𝑧𝑦)))
111, 5, 8, 10ismeti 23694 1 ∅ ∈ (Met‘∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wcel 2107  c0 4287   class class class wbr 5110   × cxp 5636  wf 6497  cfv 6501  (class class class)co 7362  cr 11057  0cc0 11058   + caddc 11061  cle 11197  Metcmet 20798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-sbc 3745  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-map 8774  df-met 20806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator