MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0met Structured version   Visualization version   GIF version

Theorem 0met 24290
Description: The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
0met ∅ ∈ (Met‘∅)

Proof of Theorem 0met
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5309 . 2 ∅ ∈ V
2 f0 6781 . . 3 ∅:∅⟶ℝ
3 xp0 6165 . . . 4 (∅ × ∅) = ∅
43feq2i 6717 . . 3 (∅:(∅ × ∅)⟶ℝ ↔ ∅:∅⟶ℝ)
52, 4mpbir 230 . 2 ∅:(∅ × ∅)⟶ℝ
6 noel 4332 . . . 4 ¬ 𝑥 ∈ ∅
76pm2.21i 119 . . 3 (𝑥 ∈ ∅ → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
87adantr 479 . 2 ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
96pm2.21i 119 . . 3 (𝑥 ∈ ∅ → (𝑥𝑦) ≤ ((𝑧𝑥) + (𝑧𝑦)))
1093ad2ant1 1130 . 2 ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) → (𝑥𝑦) ≤ ((𝑧𝑥) + (𝑧𝑦)))
111, 5, 8, 10ismeti 24249 1 ∅ ∈ (Met‘∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  c0 4324   class class class wbr 5150   × cxp 5678  wf 6547  cfv 6551  (class class class)co 7424  cr 11143  0cc0 11144   + caddc 11147  cle 11285  Metcmet 21270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-fv 6559  df-ov 7427  df-oprab 7428  df-mpo 7429  df-map 8851  df-met 21278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator