![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0met | Structured version Visualization version GIF version |
Description: The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
0met | ⊢ ∅ ∈ (Met‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5309 | . 2 ⊢ ∅ ∈ V | |
2 | f0 6781 | . . 3 ⊢ ∅:∅⟶ℝ | |
3 | xp0 6165 | . . . 4 ⊢ (∅ × ∅) = ∅ | |
4 | 3 | feq2i 6717 | . . 3 ⊢ (∅:(∅ × ∅)⟶ℝ ↔ ∅:∅⟶ℝ) |
5 | 2, 4 | mpbir 230 | . 2 ⊢ ∅:(∅ × ∅)⟶ℝ |
6 | noel 4332 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
7 | 6 | pm2.21i 119 | . . 3 ⊢ (𝑥 ∈ ∅ → ((𝑥∅𝑦) = 0 ↔ 𝑥 = 𝑦)) |
8 | 7 | adantr 479 | . 2 ⊢ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) → ((𝑥∅𝑦) = 0 ↔ 𝑥 = 𝑦)) |
9 | 6 | pm2.21i 119 | . . 3 ⊢ (𝑥 ∈ ∅ → (𝑥∅𝑦) ≤ ((𝑧∅𝑥) + (𝑧∅𝑦))) |
10 | 9 | 3ad2ant1 1130 | . 2 ⊢ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) → (𝑥∅𝑦) ≤ ((𝑧∅𝑥) + (𝑧∅𝑦))) |
11 | 1, 5, 8, 10 | ismeti 24249 | 1 ⊢ ∅ ∈ (Met‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∅c0 4324 class class class wbr 5150 × cxp 5678 ⟶wf 6547 ‘cfv 6551 (class class class)co 7424 ℝcr 11143 0cc0 11144 + caddc 11147 ≤ cle 11285 Metcmet 21270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8851 df-met 21278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |