| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0met | Structured version Visualization version GIF version | ||
| Description: The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| 0met | ⊢ ∅ ∈ (Met‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5249 | . 2 ⊢ ∅ ∈ V | |
| 2 | f0 6712 | . . 3 ⊢ ∅:∅⟶ℝ | |
| 3 | xp0 5721 | . . . 4 ⊢ (∅ × ∅) = ∅ | |
| 4 | 3 | feq2i 6651 | . . 3 ⊢ (∅:(∅ × ∅)⟶ℝ ↔ ∅:∅⟶ℝ) |
| 5 | 2, 4 | mpbir 231 | . 2 ⊢ ∅:(∅ × ∅)⟶ℝ |
| 6 | noel 4287 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 7 | 6 | pm2.21i 119 | . . 3 ⊢ (𝑥 ∈ ∅ → ((𝑥∅𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅) → ((𝑥∅𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 9 | 6 | pm2.21i 119 | . . 3 ⊢ (𝑥 ∈ ∅ → (𝑥∅𝑦) ≤ ((𝑧∅𝑥) + (𝑧∅𝑦))) |
| 10 | 9 | 3ad2ant1 1133 | . 2 ⊢ ((𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) → (𝑥∅𝑦) ≤ ((𝑧∅𝑥) + (𝑧∅𝑦))) |
| 11 | 1, 5, 8, 10 | ismeti 24260 | 1 ⊢ ∅ ∈ (Met‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∅c0 4282 class class class wbr 5095 × cxp 5619 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℝcr 11016 0cc0 11017 + caddc 11020 ≤ cle 11158 Metcmet 21286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-map 8761 df-met 21294 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |