MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismeti Structured version   Visualization version   GIF version

Theorem ismeti 24151
Description: Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
ismeti.0 𝑋 ∈ V
ismeti.1 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„
ismeti.2 ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦))
ismeti.3 ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
Assertion
Ref Expression
ismeti 𝐷 ∈ (Metβ€˜π‘‹)
Distinct variable groups:   π‘₯,𝑦,𝑧,𝐷   π‘₯,𝑋,𝑦,𝑧

Proof of Theorem ismeti
StepHypRef Expression
1 ismeti.1 . 2 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„
2 ismeti.2 . . . 4 ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ ((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦))
3 ismeti.3 . . . . . 6 ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
433expa 1117 . . . . 5 (((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
54ralrimiva 3145 . . . 4 ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
62, 5jca 511 . . 3 ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦))))
76rgen2 3196 . 2 βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))
8 ismeti.0 . . 3 𝑋 ∈ V
9 ismet 24149 . . 3 (𝑋 ∈ V β†’ (𝐷 ∈ (Metβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦))))))
108, 9ax-mp 5 . 2 (𝐷 ∈ (Metβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) + (𝑧𝐷𝑦)))))
111, 7, 10mpbir2an 708 1 𝐷 ∈ (Metβ€˜π‘‹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  Vcvv 3473   class class class wbr 5148   Γ— cxp 5674  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412  β„cr 11115  0cc0 11116   + caddc 11119   ≀ cle 11256  Metcmet 21219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-met 21227
This theorem is referenced by:  0met  24192  cnmet  24608  imsmetlem  30376
  Copyright terms: Public domain W3C validator