![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismeti | Structured version Visualization version GIF version |
Description: Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
ismeti.0 | β’ π β V |
ismeti.1 | β’ π·:(π Γ π)βΆβ |
ismeti.2 | β’ ((π₯ β π β§ π¦ β π) β ((π₯π·π¦) = 0 β π₯ = π¦)) |
ismeti.3 | β’ ((π₯ β π β§ π¦ β π β§ π§ β π) β (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))) |
Ref | Expression |
---|---|
ismeti | β’ π· β (Metβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismeti.1 | . 2 β’ π·:(π Γ π)βΆβ | |
2 | ismeti.2 | . . . 4 β’ ((π₯ β π β§ π¦ β π) β ((π₯π·π¦) = 0 β π₯ = π¦)) | |
3 | ismeti.3 | . . . . . 6 β’ ((π₯ β π β§ π¦ β π β§ π§ β π) β (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))) | |
4 | 3 | 3expa 1117 | . . . . 5 β’ (((π₯ β π β§ π¦ β π) β§ π§ β π) β (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))) |
5 | 4 | ralrimiva 3145 | . . . 4 β’ ((π₯ β π β§ π¦ β π) β βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))) |
6 | 2, 5 | jca 511 | . . 3 β’ ((π₯ β π β§ π¦ β π) β (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦)))) |
7 | 6 | rgen2 3196 | . 2 β’ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))) |
8 | ismeti.0 | . . 3 β’ π β V | |
9 | ismet 24149 | . . 3 β’ (π β V β (π· β (Metβπ) β (π·:(π Γ π)βΆβ β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦)))))) | |
10 | 8, 9 | ax-mp 5 | . 2 β’ (π· β (Metβπ) β (π·:(π Γ π)βΆβ β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))))) |
11 | 1, 7, 10 | mpbir2an 708 | 1 β’ π· β (Metβπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwral 3060 Vcvv 3473 class class class wbr 5148 Γ cxp 5674 βΆwf 6539 βcfv 6543 (class class class)co 7412 βcr 11115 0cc0 11116 + caddc 11119 β€ cle 11256 Metcmet 21219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 df-met 21227 |
This theorem is referenced by: 0met 24192 cnmet 24608 imsmetlem 30376 |
Copyright terms: Public domain | W3C validator |