![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismeti | Structured version Visualization version GIF version |
Description: Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
ismeti.0 | ⊢ 𝑋 ∈ V |
ismeti.1 | ⊢ 𝐷:(𝑋 × 𝑋)⟶ℝ |
ismeti.2 | ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
ismeti.3 | ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
Ref | Expression |
---|---|
ismeti | ⊢ 𝐷 ∈ (Met‘𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismeti.1 | . 2 ⊢ 𝐷:(𝑋 × 𝑋)⟶ℝ | |
2 | ismeti.2 | . . . 4 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) | |
3 | ismeti.3 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) | |
4 | 3 | 3expa 1118 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
5 | 4 | ralrimiva 3152 | . . . 4 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
6 | 2, 5 | jca 511 | . . 3 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) |
7 | 6 | rgen2 3205 | . 2 ⊢ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
8 | ismeti.0 | . . 3 ⊢ 𝑋 ∈ V | |
9 | ismet 24354 | . . 3 ⊢ (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) |
11 | 1, 7, 10 | mpbir2an 710 | 1 ⊢ 𝐷 ∈ (Met‘𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 class class class wbr 5166 × cxp 5698 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 + caddc 11187 ≤ cle 11325 Metcmet 21373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-met 21381 |
This theorem is referenced by: 0met 24397 cnmet 24813 imsmetlem 30722 |
Copyright terms: Public domain | W3C validator |