![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qusmul2 | Structured version Visualization version GIF version |
Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.) |
Ref | Expression |
---|---|
qusmul2.h | ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
qusmul2.v | ⊢ 𝐵 = (Base‘𝑅) |
qusmul2.p | ⊢ · = (.r‘𝑅) |
qusmul2.a | ⊢ × = (.r‘𝑄) |
qusmul2.1 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
qusmul2.2 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
qusmul2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
qusmul2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
qusmul2 | ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusmul2.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | qusmul2.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | qusmul2.h | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
5 | qusmul2.v | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
7 | qusmul2.1 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
8 | qusmul2.2 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
9 | 8 | 2idllidld 21104 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
10 | eqid 2731 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
11 | 10 | lidlsubg 21076 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅)) |
12 | 7, 9, 11 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
13 | eqid 2731 | . . . . 5 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
14 | 5, 13 | eqger 19101 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵) |
15 | 12, 14 | syl 17 | . . 3 ⊢ (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵) |
16 | eqid 2731 | . . . . 5 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
17 | qusmul2.p | . . . . 5 ⊢ · = (.r‘𝑅) | |
18 | 5, 13, 16, 17 | 2idlcpbl 21110 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) |
19 | 7, 8, 18 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝑥(𝑅 ~QG 𝐼)𝑦 ∧ 𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡))) |
20 | 5, 17 | ringcl 20151 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝 · 𝑞) ∈ 𝐵) |
21 | 20 | 3expb 1119 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) |
22 | 7, 21 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 · 𝑞) ∈ 𝐵) |
23 | 22 | caovclg 7603 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵)) → (𝑦 · 𝑡) ∈ 𝐵) |
24 | qusmul2.a | . . 3 ⊢ × = (.r‘𝑄) | |
25 | 4, 6, 15, 7, 19, 23, 17, 24 | qusmulval 17508 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
26 | 1, 2, 25 | mpd3an23 1462 | 1 ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 Er wer 8706 [cec 8707 Basecbs 17151 .rcmulr 17205 /s cqus 17458 SubGrpcsubg 19043 ~QG cqg 19045 Ringcrg 20134 LIdealclidl 21017 2Idealc2idl 21094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-ec 8711 df-qs 8715 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-0g 17394 df-imas 17461 df-qus 17462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-eqg 19048 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-subrg 20467 df-lmod 20704 df-lss 20775 df-sra 21019 df-rgmod 21020 df-lidl 21021 df-2idl 21095 |
This theorem is referenced by: opprqusmulr 33045 qsdrngilem 33048 qsdrnglem2 33050 |
Copyright terms: Public domain | W3C validator |