| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opprqus1r | Structured version Visualization version GIF version | ||
| Description: The ring unity of the quotient of the opposite ring is the same as the ring unity of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| opprqus.b | ⊢ 𝐵 = (Base‘𝑅) |
| opprqus.o | ⊢ 𝑂 = (oppr‘𝑅) |
| opprqus.q | ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| opprqus1r.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| opprqus1r.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| Ref | Expression |
|---|---|
| opprqus1r | ⊢ (𝜑 → (1r‘(oppr‘𝑄)) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (Base‘(oppr‘𝑄)) = (Base‘(oppr‘𝑄)) | |
| 2 | fvexd 6837 | . 2 ⊢ (𝜑 → (oppr‘𝑄) ∈ V) | |
| 3 | ovexd 7384 | . 2 ⊢ (𝜑 → (𝑂 /s (𝑂 ~QG 𝐼)) ∈ V) | |
| 4 | opprqus.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | opprqus.o | . . 3 ⊢ 𝑂 = (oppr‘𝑅) | |
| 6 | opprqus.q | . . 3 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | |
| 7 | opprqus1r.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | opprqus1r.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 9 | 8 | 2idllidld 21161 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| 10 | eqid 2729 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 11 | 4, 10 | lidlss 21119 | . . . 4 ⊢ (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ 𝐵) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
| 13 | 4, 5, 6, 7, 12 | opprqusbas 33434 | . 2 ⊢ (𝜑 → (Base‘(oppr‘𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| 14 | 7 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘(oppr‘𝑄))) ∧ 𝑦 ∈ (Base‘(oppr‘𝑄))) → 𝑅 ∈ Ring) |
| 15 | 8 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘(oppr‘𝑄))) ∧ 𝑦 ∈ (Base‘(oppr‘𝑄))) → 𝐼 ∈ (2Ideal‘𝑅)) |
| 16 | eqid 2729 | . . 3 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(oppr‘𝑄))) → 𝑥 ∈ (Base‘(oppr‘𝑄))) | |
| 18 | eqid 2729 | . . . . . 6 ⊢ (oppr‘𝑄) = (oppr‘𝑄) | |
| 19 | 18, 16 | opprbas 20228 | . . . . 5 ⊢ (Base‘𝑄) = (Base‘(oppr‘𝑄)) |
| 20 | 17, 19 | eleqtrrdi 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘(oppr‘𝑄))) → 𝑥 ∈ (Base‘𝑄)) |
| 21 | 20 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘(oppr‘𝑄))) ∧ 𝑦 ∈ (Base‘(oppr‘𝑄))) → 𝑥 ∈ (Base‘𝑄)) |
| 22 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(oppr‘𝑄))) → 𝑦 ∈ (Base‘(oppr‘𝑄))) | |
| 23 | 22, 19 | eleqtrrdi 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(oppr‘𝑄))) → 𝑦 ∈ (Base‘𝑄)) |
| 24 | 23 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘(oppr‘𝑄))) ∧ 𝑦 ∈ (Base‘(oppr‘𝑄))) → 𝑦 ∈ (Base‘𝑄)) |
| 25 | 4, 5, 6, 14, 15, 16, 21, 24 | opprqusmulr 33437 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘(oppr‘𝑄))) ∧ 𝑦 ∈ (Base‘(oppr‘𝑄))) → (𝑥(.r‘(oppr‘𝑄))𝑦) = (𝑥(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑦)) |
| 26 | 1, 2, 3, 13, 25 | urpropd 33181 | 1 ⊢ (𝜑 → (1r‘(oppr‘𝑄)) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 /s cqus 17409 ~QG cqg 19001 1rcur 20066 Ringcrg 20118 opprcoppr 20221 LIdealclidl 21113 2Idealc2idl 21156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-ec 8627 df-qs 8631 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-imas 17412 df-qus 17413 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-eqg 19004 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-subrg 20455 df-lmod 20765 df-lss 20835 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-2idl 21157 |
| This theorem is referenced by: opprqusdrng 33439 qsdrngi 33441 |
| Copyright terms: Public domain | W3C validator |