Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprqus1r Structured version   Visualization version   GIF version

Theorem opprqus1r 32452
Description: The ring unity of the quotient of the opposite ring is the same as the ring unity of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
opprqus.b 𝐡 = (Baseβ€˜π‘…)
opprqus.o 𝑂 = (opprβ€˜π‘…)
opprqus.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
opprqus1r.r (πœ‘ β†’ 𝑅 ∈ Ring)
opprqus1r.i (πœ‘ β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
Assertion
Ref Expression
opprqus1r (πœ‘ β†’ (1rβ€˜(opprβ€˜π‘„)) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))

Proof of Theorem opprqus1r
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (Baseβ€˜(opprβ€˜π‘„)) = (Baseβ€˜(opprβ€˜π‘„))
2 fvexd 6893 . 2 (πœ‘ β†’ (opprβ€˜π‘„) ∈ V)
3 ovexd 7428 . 2 (πœ‘ β†’ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ V)
4 opprqus.b . . 3 𝐡 = (Baseβ€˜π‘…)
5 opprqus.o . . 3 𝑂 = (opprβ€˜π‘…)
6 opprqus.q . . 3 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
7 opprqus1r.r . . 3 (πœ‘ β†’ 𝑅 ∈ Ring)
8 opprqus1r.i . . . . 5 (πœ‘ β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
982idllidld 20805 . . . 4 (πœ‘ β†’ 𝐼 ∈ (LIdealβ€˜π‘…))
10 eqid 2731 . . . . 5 (LIdealβ€˜π‘…) = (LIdealβ€˜π‘…)
114, 10lidlss 20781 . . . 4 (𝐼 ∈ (LIdealβ€˜π‘…) β†’ 𝐼 βŠ† 𝐡)
129, 11syl 17 . . 3 (πœ‘ β†’ 𝐼 βŠ† 𝐡)
134, 5, 6, 7, 12opprqusbas 32448 . 2 (πœ‘ β†’ (Baseβ€˜(opprβ€˜π‘„)) = (Baseβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))
147ad2antrr 724 . . 3 (((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜(opprβ€˜π‘„))) ∧ 𝑦 ∈ (Baseβ€˜(opprβ€˜π‘„))) β†’ 𝑅 ∈ Ring)
158ad2antrr 724 . . 3 (((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜(opprβ€˜π‘„))) ∧ 𝑦 ∈ (Baseβ€˜(opprβ€˜π‘„))) β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
16 eqid 2731 . . 3 (Baseβ€˜π‘„) = (Baseβ€˜π‘„)
17 simpr 485 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜(opprβ€˜π‘„))) β†’ π‘₯ ∈ (Baseβ€˜(opprβ€˜π‘„)))
18 eqid 2731 . . . . . 6 (opprβ€˜π‘„) = (opprβ€˜π‘„)
1918, 16opprbas 20109 . . . . 5 (Baseβ€˜π‘„) = (Baseβ€˜(opprβ€˜π‘„))
2017, 19eleqtrrdi 2843 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜(opprβ€˜π‘„))) β†’ π‘₯ ∈ (Baseβ€˜π‘„))
2120adantr 481 . . 3 (((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜(opprβ€˜π‘„))) ∧ 𝑦 ∈ (Baseβ€˜(opprβ€˜π‘„))) β†’ π‘₯ ∈ (Baseβ€˜π‘„))
22 simpr 485 . . . . 5 ((πœ‘ ∧ 𝑦 ∈ (Baseβ€˜(opprβ€˜π‘„))) β†’ 𝑦 ∈ (Baseβ€˜(opprβ€˜π‘„)))
2322, 19eleqtrrdi 2843 . . . 4 ((πœ‘ ∧ 𝑦 ∈ (Baseβ€˜(opprβ€˜π‘„))) β†’ 𝑦 ∈ (Baseβ€˜π‘„))
2423adantlr 713 . . 3 (((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜(opprβ€˜π‘„))) ∧ 𝑦 ∈ (Baseβ€˜(opprβ€˜π‘„))) β†’ 𝑦 ∈ (Baseβ€˜π‘„))
254, 5, 6, 14, 15, 16, 21, 24opprqusmulr 32451 . 2 (((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜(opprβ€˜π‘„))) ∧ 𝑦 ∈ (Baseβ€˜(opprβ€˜π‘„))) β†’ (π‘₯(.rβ€˜(opprβ€˜π‘„))𝑦) = (π‘₯(.rβ€˜(𝑂 /s (𝑂 ~QG 𝐼)))𝑦))
261, 2, 3, 13, 25urpropd 32245 1 (πœ‘ β†’ (1rβ€˜(opprβ€˜π‘„)) = (1rβ€˜(𝑂 /s (𝑂 ~QG 𝐼))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3473   βŠ† wss 3944  β€˜cfv 6532  (class class class)co 7393  Basecbs 17126   /s cqus 17433   ~QG cqg 18974  1rcur 19963  Ringcrg 20014  opprcoppr 20101  LIdealclidl 20732  2Idealc2idl 20802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-tpos 8193  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-ec 8688  df-qs 8692  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-fz 13467  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-0g 17369  df-imas 17436  df-qus 17437  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-grp 18797  df-minusg 18798  df-sbg 18799  df-subg 18975  df-eqg 18977  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-oppr 20102  df-subrg 20310  df-lmod 20422  df-lss 20492  df-sra 20734  df-rgmod 20735  df-lidl 20736  df-2idl 20803
This theorem is referenced by:  opprqusdrng  32453  qsdrngi  32455
  Copyright terms: Public domain W3C validator