Step | Hyp | Ref
| Expression |
1 | | rng2idl1cntr.j |
. . . . 5
β’ π½ = (π
βΎs πΌ) |
2 | | eqid 2732 |
. . . . 5
β’
(Baseβπ
) =
(Baseβπ
) |
3 | 1, 2 | ressbasss 17179 |
. . . 4
β’
(Baseβπ½)
β (Baseβπ
) |
4 | | rng2idl1cntr.u |
. . . . 5
β’ (π β π½ β Ring) |
5 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ½) =
(Baseβπ½) |
6 | | rng2idl1cntr.1 |
. . . . . 6
β’ 1 =
(1rβπ½) |
7 | 5, 6 | ringidcl 20076 |
. . . . 5
β’ (π½ β Ring β 1 β
(Baseβπ½)) |
8 | 4, 7 | syl 17 |
. . . 4
β’ (π β 1 β (Baseβπ½)) |
9 | 3, 8 | sselid 3979 |
. . 3
β’ (π β 1 β (Baseβπ
)) |
10 | | rng2idl1cntr.r |
. . . . . . 7
β’ (π β π
β Rng) |
11 | 10 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ
)) β π
β Rng) |
12 | 9 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ
)) β 1 β (Baseβπ
)) |
13 | | simpr 485 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ
)) β π₯ β (Baseβπ
)) |
14 | | eqid 2732 |
. . . . . . 7
β’
(.rβπ
) = (.rβπ
) |
15 | 2, 14 | rngass 46644 |
. . . . . 6
β’ ((π
β Rng β§ ( 1 β
(Baseβπ
) β§ π₯ β (Baseβπ
) β§ 1 β (Baseβπ
))) β (( 1 (.rβπ
)π₯)(.rβπ
) 1 ) = ( 1 (.rβπ
)(π₯(.rβπ
) 1 ))) |
16 | 11, 12, 13, 12, 15 | syl13anc 1372 |
. . . . 5
β’ ((π β§ π₯ β (Baseβπ
)) β (( 1 (.rβπ
)π₯)(.rβπ
) 1 ) = ( 1 (.rβπ
)(π₯(.rβπ
) 1 ))) |
17 | | eqid 2732 |
. . . . . . 7
β’
(.rβπ½) = (.rβπ½) |
18 | 4 | adantr 481 |
. . . . . . 7
β’ ((π β§ π₯ β (Baseβπ
)) β π½ β Ring) |
19 | | rng2idl1cntr.i |
. . . . . . . 8
β’ (π β πΌ β (2Idealβπ
)) |
20 | 10, 19, 1, 4, 2, 14,
6 | rngqiprngghmlem1 46752 |
. . . . . . 7
β’ ((π β§ π₯ β (Baseβπ
)) β ( 1 (.rβπ
)π₯) β (Baseβπ½)) |
21 | 5, 17, 6, 18, 20 | ringridmd 20083 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ
)) β (( 1 (.rβπ
)π₯)(.rβπ½) 1 ) = ( 1 (.rβπ
)π₯)) |
22 | 1, 14 | ressmulr 17248 |
. . . . . . . . . 10
β’ (πΌ β (2Idealβπ
) β
(.rβπ
) =
(.rβπ½)) |
23 | 19, 22 | syl 17 |
. . . . . . . . 9
β’ (π β (.rβπ
) = (.rβπ½)) |
24 | 23 | oveqd 7422 |
. . . . . . . 8
β’ (π β (( 1 (.rβπ
)π₯)(.rβπ
) 1 ) = (( 1 (.rβπ
)π₯)(.rβπ½) 1 )) |
25 | 24 | eqeq1d 2734 |
. . . . . . 7
β’ (π β ((( 1 (.rβπ
)π₯)(.rβπ
) 1 ) = ( 1 (.rβπ
)π₯) β (( 1 (.rβπ
)π₯)(.rβπ½) 1 ) = ( 1 (.rβπ
)π₯))) |
26 | 25 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ
)) β ((( 1 (.rβπ
)π₯)(.rβπ
) 1 ) = ( 1 (.rβπ
)π₯) β (( 1 (.rβπ
)π₯)(.rβπ½) 1 ) = ( 1 (.rβπ
)π₯))) |
27 | 21, 26 | mpbird 256 |
. . . . 5
β’ ((π β§ π₯ β (Baseβπ
)) β (( 1 (.rβπ
)π₯)(.rβπ
) 1 ) = ( 1 (.rβπ
)π₯)) |
28 | 19 | 2idllidld 20858 |
. . . . . . . . . . 11
β’ (π β πΌ β (LIdealβπ
)) |
29 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(LIdealβπ
) =
(LIdealβπ
) |
30 | 2, 29 | lidlss 20825 |
. . . . . . . . . . 11
β’ (πΌ β (LIdealβπ
) β πΌ β (Baseβπ
)) |
31 | 1, 2 | ressbas2 17178 |
. . . . . . . . . . . 12
β’ (πΌ β (Baseβπ
) β πΌ = (Baseβπ½)) |
32 | 31 | eqcomd 2738 |
. . . . . . . . . . 11
β’ (πΌ β (Baseβπ
) β (Baseβπ½) = πΌ) |
33 | 28, 30, 32 | 3syl 18 |
. . . . . . . . . 10
β’ (π β (Baseβπ½) = πΌ) |
34 | 33, 28 | eqeltrd 2833 |
. . . . . . . . 9
β’ (π β (Baseβπ½) β (LIdealβπ
)) |
35 | 19, 1, 5 | 2idlbas 20861 |
. . . . . . . . . . 11
β’ (π β (Baseβπ½) = πΌ) |
36 | | ringrng 46641 |
. . . . . . . . . . . . . 14
β’ (π½ β Ring β π½ β Rng) |
37 | 4, 36 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π½ β Rng) |
38 | 1, 37 | eqeltrrid 2838 |
. . . . . . . . . . . 12
β’ (π β (π
βΎs πΌ) β Rng) |
39 | 10, 19, 38 | rng2idlsubrng 46741 |
. . . . . . . . . . 11
β’ (π β πΌ β (SubRngβπ
)) |
40 | 35, 39 | eqeltrd 2833 |
. . . . . . . . . 10
β’ (π β (Baseβπ½) β (SubRngβπ
)) |
41 | | subrngsubg 46715 |
. . . . . . . . . 10
β’
((Baseβπ½)
β (SubRngβπ
)
β (Baseβπ½)
β (SubGrpβπ
)) |
42 | | eqid 2732 |
. . . . . . . . . . 11
β’
(0gβπ
) = (0gβπ
) |
43 | 42 | subg0cl 19008 |
. . . . . . . . . 10
β’
((Baseβπ½)
β (SubGrpβπ
)
β (0gβπ
) β (Baseβπ½)) |
44 | 40, 41, 43 | 3syl 18 |
. . . . . . . . 9
β’ (π β (0gβπ
) β (Baseβπ½)) |
45 | 10, 34, 44 | 3jca 1128 |
. . . . . . . 8
β’ (π β (π
β Rng β§ (Baseβπ½) β (LIdealβπ
) β§
(0gβπ
)
β (Baseβπ½))) |
46 | 8 | anim1ci 616 |
. . . . . . . 8
β’ ((π β§ π₯ β (Baseβπ
)) β (π₯ β (Baseβπ
) β§ 1 β (Baseβπ½))) |
47 | 42, 2, 14, 29 | rnglidlmcl 46732 |
. . . . . . . 8
β’ (((π
β Rng β§
(Baseβπ½) β
(LIdealβπ
) β§
(0gβπ
)
β (Baseβπ½))
β§ (π₯ β
(Baseβπ
) β§ 1 β
(Baseβπ½))) β
(π₯(.rβπ
) 1 ) β (Baseβπ½)) |
48 | 45, 46, 47 | syl2an2r 683 |
. . . . . . 7
β’ ((π β§ π₯ β (Baseβπ
)) β (π₯(.rβπ
) 1 ) β (Baseβπ½)) |
49 | 5, 17, 6, 18, 48 | ringlidmd 20082 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ
)) β ( 1 (.rβπ½)(π₯(.rβπ
) 1 )) = (π₯(.rβπ
) 1 )) |
50 | 23 | oveqd 7422 |
. . . . . . . 8
β’ (π β ( 1 (.rβπ
)(π₯(.rβπ
) 1 )) = ( 1 (.rβπ½)(π₯(.rβπ
) 1 ))) |
51 | 50 | eqeq1d 2734 |
. . . . . . 7
β’ (π β (( 1 (.rβπ
)(π₯(.rβπ
) 1 )) = (π₯(.rβπ
) 1 ) β ( 1
(.rβπ½)(π₯(.rβπ
) 1 )) = (π₯(.rβπ
) 1 ))) |
52 | 51 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ
)) β (( 1 (.rβπ
)(π₯(.rβπ
) 1 )) = (π₯(.rβπ
) 1 ) β ( 1
(.rβπ½)(π₯(.rβπ
) 1 )) = (π₯(.rβπ
) 1 ))) |
53 | 49, 52 | mpbird 256 |
. . . . 5
β’ ((π β§ π₯ β (Baseβπ
)) β ( 1 (.rβπ
)(π₯(.rβπ
) 1 )) = (π₯(.rβπ
) 1 )) |
54 | 16, 27, 53 | 3eqtr3d 2780 |
. . . 4
β’ ((π β§ π₯ β (Baseβπ
)) β ( 1 (.rβπ
)π₯) = (π₯(.rβπ
) 1 )) |
55 | 54 | ralrimiva 3146 |
. . 3
β’ (π β βπ₯ β (Baseβπ
)( 1 (.rβπ
)π₯) = (π₯(.rβπ
) 1 )) |
56 | | ssidd 4004 |
. . . 4
β’ (π β (Baseβπ
) β (Baseβπ
)) |
57 | | rng2idl1cntr.m |
. . . . . 6
β’ π = (mulGrpβπ
) |
58 | 57, 2 | mgpbas 19987 |
. . . . 5
β’
(Baseβπ
) =
(Baseβπ) |
59 | 57, 14 | mgpplusg 19985 |
. . . . 5
β’
(.rβπ
) = (+gβπ) |
60 | | eqid 2732 |
. . . . 5
β’
(Cntzβπ) =
(Cntzβπ) |
61 | 58, 59, 60 | elcntz 19180 |
. . . 4
β’
((Baseβπ
)
β (Baseβπ
)
β ( 1 β ((Cntzβπ)β(Baseβπ
)) β ( 1 β (Baseβπ
) β§ βπ₯ β (Baseβπ
)( 1 (.rβπ
)π₯) = (π₯(.rβπ
) 1 )))) |
62 | 56, 61 | syl 17 |
. . 3
β’ (π β ( 1 β ((Cntzβπ)β(Baseβπ
)) β ( 1 β (Baseβπ
) β§ βπ₯ β (Baseβπ
)( 1 (.rβπ
)π₯) = (π₯(.rβπ
) 1 )))) |
63 | 9, 55, 62 | mpbir2and 711 |
. 2
β’ (π β 1 β ((Cntzβπ)β(Baseβπ
))) |
64 | 58, 60 | cntrval 19177 |
. 2
β’
((Cntzβπ)β(Baseβπ
)) = (Cntrβπ) |
65 | 63, 64 | eleqtrdi 2843 |
1
β’ (π β 1 β (Cntrβπ)) |