MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rng2idl1cntr Structured version   Visualization version   GIF version

Theorem rng2idl1cntr 21333
Description: The unity of a two-sided ideal of a non-unital ring is central, i.e., an element of the center of the multiplicative semigroup of the non-unital ring. This is part of the proof given in MathOverflow, which seems to be sufficient to show that 𝐹 given below (see rngqiprngimf 21325) is an isomorphism. In our proof, however we show that 𝐹 is linear regarding the multiplication (rngqiprnglin 21330) via rngqiprnglinlem1 21319 instead. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
rng2idl1cntr.r (𝜑𝑅 ∈ Rng)
rng2idl1cntr.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idl1cntr.j 𝐽 = (𝑅s 𝐼)
rng2idl1cntr.u (𝜑𝐽 ∈ Ring)
rng2idl1cntr.1 1 = (1r𝐽)
rng2idl1cntr.m 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
rng2idl1cntr (𝜑1 ∈ (Cntr‘𝑀))

Proof of Theorem rng2idl1cntr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rng2idl1cntr.j . . . . 5 𝐽 = (𝑅s 𝐼)
2 eqid 2735 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
31, 2ressbasss 17284 . . . 4 (Base‘𝐽) ⊆ (Base‘𝑅)
4 rng2idl1cntr.u . . . . 5 (𝜑𝐽 ∈ Ring)
5 eqid 2735 . . . . . 6 (Base‘𝐽) = (Base‘𝐽)
6 rng2idl1cntr.1 . . . . . 6 1 = (1r𝐽)
75, 6ringidcl 20280 . . . . 5 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
84, 7syl 17 . . . 4 (𝜑1 ∈ (Base‘𝐽))
93, 8sselid 3993 . . 3 (𝜑1 ∈ (Base‘𝑅))
10 rng2idl1cntr.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
1110adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Rng)
129adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → 1 ∈ (Base‘𝑅))
13 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
14 eqid 2735 . . . . . . 7 (.r𝑅) = (.r𝑅)
152, 14rngass 20177 . . . . . 6 ((𝑅 ∈ Rng ∧ ( 1 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅))) → (( 1 (.r𝑅)𝑥)(.r𝑅) 1 ) = ( 1 (.r𝑅)(𝑥(.r𝑅) 1 )))
1611, 12, 13, 12, 15syl13anc 1371 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → (( 1 (.r𝑅)𝑥)(.r𝑅) 1 ) = ( 1 (.r𝑅)(𝑥(.r𝑅) 1 )))
17 eqid 2735 . . . . . . 7 (.r𝐽) = (.r𝐽)
184adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐽 ∈ Ring)
19 rng2idl1cntr.i . . . . . . . 8 (𝜑𝐼 ∈ (2Ideal‘𝑅))
2010, 19, 1, 4, 2, 14, 6rngqiprngghmlem1 21315 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → ( 1 (.r𝑅)𝑥) ∈ (Base‘𝐽))
215, 17, 6, 18, 20ringridmd 20287 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (( 1 (.r𝑅)𝑥)(.r𝐽) 1 ) = ( 1 (.r𝑅)𝑥))
221, 14ressmulr 17353 . . . . . . . . . 10 (𝐼 ∈ (2Ideal‘𝑅) → (.r𝑅) = (.r𝐽))
2319, 22syl 17 . . . . . . . . 9 (𝜑 → (.r𝑅) = (.r𝐽))
2423oveqd 7448 . . . . . . . 8 (𝜑 → (( 1 (.r𝑅)𝑥)(.r𝑅) 1 ) = (( 1 (.r𝑅)𝑥)(.r𝐽) 1 ))
2524eqeq1d 2737 . . . . . . 7 (𝜑 → ((( 1 (.r𝑅)𝑥)(.r𝑅) 1 ) = ( 1 (.r𝑅)𝑥) ↔ (( 1 (.r𝑅)𝑥)(.r𝐽) 1 ) = ( 1 (.r𝑅)𝑥)))
2625adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((( 1 (.r𝑅)𝑥)(.r𝑅) 1 ) = ( 1 (.r𝑅)𝑥) ↔ (( 1 (.r𝑅)𝑥)(.r𝐽) 1 ) = ( 1 (.r𝑅)𝑥)))
2721, 26mpbird 257 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → (( 1 (.r𝑅)𝑥)(.r𝑅) 1 ) = ( 1 (.r𝑅)𝑥))
28192idllidld 21282 . . . . . . . . . . 11 (𝜑𝐼 ∈ (LIdeal‘𝑅))
29 eqid 2735 . . . . . . . . . . . 12 (LIdeal‘𝑅) = (LIdeal‘𝑅)
302, 29lidlss 21240 . . . . . . . . . . 11 (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ (Base‘𝑅))
311, 2ressbas2 17283 . . . . . . . . . . . 12 (𝐼 ⊆ (Base‘𝑅) → 𝐼 = (Base‘𝐽))
3231eqcomd 2741 . . . . . . . . . . 11 (𝐼 ⊆ (Base‘𝑅) → (Base‘𝐽) = 𝐼)
3328, 30, 323syl 18 . . . . . . . . . 10 (𝜑 → (Base‘𝐽) = 𝐼)
3433, 28eqeltrd 2839 . . . . . . . . 9 (𝜑 → (Base‘𝐽) ∈ (LIdeal‘𝑅))
3519, 1, 52idlbas 21291 . . . . . . . . . . 11 (𝜑 → (Base‘𝐽) = 𝐼)
36 ringrng 20299 . . . . . . . . . . . . . 14 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
374, 36syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Rng)
381, 37eqeltrrid 2844 . . . . . . . . . . . 12 (𝜑 → (𝑅s 𝐼) ∈ Rng)
3910, 19, 38rng2idlsubrng 21293 . . . . . . . . . . 11 (𝜑𝐼 ∈ (SubRng‘𝑅))
4035, 39eqeltrd 2839 . . . . . . . . . 10 (𝜑 → (Base‘𝐽) ∈ (SubRng‘𝑅))
41 subrngsubg 20569 . . . . . . . . . 10 ((Base‘𝐽) ∈ (SubRng‘𝑅) → (Base‘𝐽) ∈ (SubGrp‘𝑅))
42 eqid 2735 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
4342subg0cl 19165 . . . . . . . . . 10 ((Base‘𝐽) ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ (Base‘𝐽))
4440, 41, 433syl 18 . . . . . . . . 9 (𝜑 → (0g𝑅) ∈ (Base‘𝐽))
4510, 34, 443jca 1127 . . . . . . . 8 (𝜑 → (𝑅 ∈ Rng ∧ (Base‘𝐽) ∈ (LIdeal‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝐽)))
468anim1ci 616 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝐽)))
4742, 2, 14, 29rnglidlmcl 21244 . . . . . . . 8 (((𝑅 ∈ Rng ∧ (Base‘𝐽) ∈ (LIdeal‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝐽)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝐽))) → (𝑥(.r𝑅) 1 ) ∈ (Base‘𝐽))
4845, 46, 47syl2an2r 685 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅) 1 ) ∈ (Base‘𝐽))
495, 17, 6, 18, 48ringlidmd 20286 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → ( 1 (.r𝐽)(𝑥(.r𝑅) 1 )) = (𝑥(.r𝑅) 1 ))
5023oveqd 7448 . . . . . . . 8 (𝜑 → ( 1 (.r𝑅)(𝑥(.r𝑅) 1 )) = ( 1 (.r𝐽)(𝑥(.r𝑅) 1 )))
5150eqeq1d 2737 . . . . . . 7 (𝜑 → (( 1 (.r𝑅)(𝑥(.r𝑅) 1 )) = (𝑥(.r𝑅) 1 ) ↔ ( 1 (.r𝐽)(𝑥(.r𝑅) 1 )) = (𝑥(.r𝑅) 1 )))
5251adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (( 1 (.r𝑅)(𝑥(.r𝑅) 1 )) = (𝑥(.r𝑅) 1 ) ↔ ( 1 (.r𝐽)(𝑥(.r𝑅) 1 )) = (𝑥(.r𝑅) 1 )))
5349, 52mpbird 257 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑥(.r𝑅) 1 )) = (𝑥(.r𝑅) 1 ))
5416, 27, 533eqtr3d 2783 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑅)) → ( 1 (.r𝑅)𝑥) = (𝑥(.r𝑅) 1 ))
5554ralrimiva 3144 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)( 1 (.r𝑅)𝑥) = (𝑥(.r𝑅) 1 ))
56 ssidd 4019 . . . 4 (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅))
57 rng2idl1cntr.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
5857, 2mgpbas 20158 . . . . 5 (Base‘𝑅) = (Base‘𝑀)
5957, 14mgpplusg 20156 . . . . 5 (.r𝑅) = (+g𝑀)
60 eqid 2735 . . . . 5 (Cntz‘𝑀) = (Cntz‘𝑀)
6158, 59, 60elcntz 19353 . . . 4 ((Base‘𝑅) ⊆ (Base‘𝑅) → ( 1 ∈ ((Cntz‘𝑀)‘(Base‘𝑅)) ↔ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)( 1 (.r𝑅)𝑥) = (𝑥(.r𝑅) 1 ))))
6256, 61syl 17 . . 3 (𝜑 → ( 1 ∈ ((Cntz‘𝑀)‘(Base‘𝑅)) ↔ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)( 1 (.r𝑅)𝑥) = (𝑥(.r𝑅) 1 ))))
639, 55, 62mpbir2and 713 . 2 (𝜑1 ∈ ((Cntz‘𝑀)‘(Base‘𝑅)))
6458, 60cntrval 19350 . 2 ((Cntz‘𝑀)‘(Base‘𝑅)) = (Cntr‘𝑀)
6563, 64eleqtrdi 2849 1 (𝜑1 ∈ (Cntr‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  .rcmulr 17299  0gc0g 17486  SubGrpcsubg 19151  Cntzccntz 19346  Cntrccntr 19347  mulGrpcmgp 20152  Rngcrng 20170  1rcur 20199  Ringcrg 20251  SubRngcsubrng 20562  LIdealclidl 21234  2Idealc2idl 21277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-cntz 19348  df-cntr 19349  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-subrng 20563  df-lss 20948  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-2idl 21278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator