MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rng2idl1cntr Structured version   Visualization version   GIF version

Theorem rng2idl1cntr 21338
Description: The unity of a two-sided ideal of a non-unital ring is central, i.e., an element of the center of the multiplicative semigroup of the non-unital ring. This is part of the proof given in MathOverflow, which seems to be sufficient to show that 𝐹 given below (see rngqiprngimf 21330) is an isomorphism. In our proof, however we show that 𝐹 is linear regarding the multiplication (rngqiprnglin 21335) via rngqiprnglinlem1 21324 instead. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
rng2idl1cntr.r (𝜑𝑅 ∈ Rng)
rng2idl1cntr.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idl1cntr.j 𝐽 = (𝑅s 𝐼)
rng2idl1cntr.u (𝜑𝐽 ∈ Ring)
rng2idl1cntr.1 1 = (1r𝐽)
rng2idl1cntr.m 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
rng2idl1cntr (𝜑1 ∈ (Cntr‘𝑀))

Proof of Theorem rng2idl1cntr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rng2idl1cntr.j . . . . 5 𝐽 = (𝑅s 𝐼)
2 eqid 2740 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
31, 2ressbasss 17297 . . . 4 (Base‘𝐽) ⊆ (Base‘𝑅)
4 rng2idl1cntr.u . . . . 5 (𝜑𝐽 ∈ Ring)
5 eqid 2740 . . . . . 6 (Base‘𝐽) = (Base‘𝐽)
6 rng2idl1cntr.1 . . . . . 6 1 = (1r𝐽)
75, 6ringidcl 20289 . . . . 5 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
84, 7syl 17 . . . 4 (𝜑1 ∈ (Base‘𝐽))
93, 8sselid 4006 . . 3 (𝜑1 ∈ (Base‘𝑅))
10 rng2idl1cntr.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
1110adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Rng)
129adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → 1 ∈ (Base‘𝑅))
13 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
14 eqid 2740 . . . . . . 7 (.r𝑅) = (.r𝑅)
152, 14rngass 20186 . . . . . 6 ((𝑅 ∈ Rng ∧ ( 1 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅))) → (( 1 (.r𝑅)𝑥)(.r𝑅) 1 ) = ( 1 (.r𝑅)(𝑥(.r𝑅) 1 )))
1611, 12, 13, 12, 15syl13anc 1372 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → (( 1 (.r𝑅)𝑥)(.r𝑅) 1 ) = ( 1 (.r𝑅)(𝑥(.r𝑅) 1 )))
17 eqid 2740 . . . . . . 7 (.r𝐽) = (.r𝐽)
184adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐽 ∈ Ring)
19 rng2idl1cntr.i . . . . . . . 8 (𝜑𝐼 ∈ (2Ideal‘𝑅))
2010, 19, 1, 4, 2, 14, 6rngqiprngghmlem1 21320 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → ( 1 (.r𝑅)𝑥) ∈ (Base‘𝐽))
215, 17, 6, 18, 20ringridmd 20296 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (( 1 (.r𝑅)𝑥)(.r𝐽) 1 ) = ( 1 (.r𝑅)𝑥))
221, 14ressmulr 17366 . . . . . . . . . 10 (𝐼 ∈ (2Ideal‘𝑅) → (.r𝑅) = (.r𝐽))
2319, 22syl 17 . . . . . . . . 9 (𝜑 → (.r𝑅) = (.r𝐽))
2423oveqd 7465 . . . . . . . 8 (𝜑 → (( 1 (.r𝑅)𝑥)(.r𝑅) 1 ) = (( 1 (.r𝑅)𝑥)(.r𝐽) 1 ))
2524eqeq1d 2742 . . . . . . 7 (𝜑 → ((( 1 (.r𝑅)𝑥)(.r𝑅) 1 ) = ( 1 (.r𝑅)𝑥) ↔ (( 1 (.r𝑅)𝑥)(.r𝐽) 1 ) = ( 1 (.r𝑅)𝑥)))
2625adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((( 1 (.r𝑅)𝑥)(.r𝑅) 1 ) = ( 1 (.r𝑅)𝑥) ↔ (( 1 (.r𝑅)𝑥)(.r𝐽) 1 ) = ( 1 (.r𝑅)𝑥)))
2721, 26mpbird 257 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → (( 1 (.r𝑅)𝑥)(.r𝑅) 1 ) = ( 1 (.r𝑅)𝑥))
28192idllidld 21287 . . . . . . . . . . 11 (𝜑𝐼 ∈ (LIdeal‘𝑅))
29 eqid 2740 . . . . . . . . . . . 12 (LIdeal‘𝑅) = (LIdeal‘𝑅)
302, 29lidlss 21245 . . . . . . . . . . 11 (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ (Base‘𝑅))
311, 2ressbas2 17296 . . . . . . . . . . . 12 (𝐼 ⊆ (Base‘𝑅) → 𝐼 = (Base‘𝐽))
3231eqcomd 2746 . . . . . . . . . . 11 (𝐼 ⊆ (Base‘𝑅) → (Base‘𝐽) = 𝐼)
3328, 30, 323syl 18 . . . . . . . . . 10 (𝜑 → (Base‘𝐽) = 𝐼)
3433, 28eqeltrd 2844 . . . . . . . . 9 (𝜑 → (Base‘𝐽) ∈ (LIdeal‘𝑅))
3519, 1, 52idlbas 21296 . . . . . . . . . . 11 (𝜑 → (Base‘𝐽) = 𝐼)
36 ringrng 20308 . . . . . . . . . . . . . 14 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
374, 36syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Rng)
381, 37eqeltrrid 2849 . . . . . . . . . . . 12 (𝜑 → (𝑅s 𝐼) ∈ Rng)
3910, 19, 38rng2idlsubrng 21298 . . . . . . . . . . 11 (𝜑𝐼 ∈ (SubRng‘𝑅))
4035, 39eqeltrd 2844 . . . . . . . . . 10 (𝜑 → (Base‘𝐽) ∈ (SubRng‘𝑅))
41 subrngsubg 20578 . . . . . . . . . 10 ((Base‘𝐽) ∈ (SubRng‘𝑅) → (Base‘𝐽) ∈ (SubGrp‘𝑅))
42 eqid 2740 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
4342subg0cl 19174 . . . . . . . . . 10 ((Base‘𝐽) ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ (Base‘𝐽))
4440, 41, 433syl 18 . . . . . . . . 9 (𝜑 → (0g𝑅) ∈ (Base‘𝐽))
4510, 34, 443jca 1128 . . . . . . . 8 (𝜑 → (𝑅 ∈ Rng ∧ (Base‘𝐽) ∈ (LIdeal‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝐽)))
468anim1ci 615 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝐽)))
4742, 2, 14, 29rnglidlmcl 21249 . . . . . . . 8 (((𝑅 ∈ Rng ∧ (Base‘𝐽) ∈ (LIdeal‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝐽)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝐽))) → (𝑥(.r𝑅) 1 ) ∈ (Base‘𝐽))
4845, 46, 47syl2an2r 684 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅) 1 ) ∈ (Base‘𝐽))
495, 17, 6, 18, 48ringlidmd 20295 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → ( 1 (.r𝐽)(𝑥(.r𝑅) 1 )) = (𝑥(.r𝑅) 1 ))
5023oveqd 7465 . . . . . . . 8 (𝜑 → ( 1 (.r𝑅)(𝑥(.r𝑅) 1 )) = ( 1 (.r𝐽)(𝑥(.r𝑅) 1 )))
5150eqeq1d 2742 . . . . . . 7 (𝜑 → (( 1 (.r𝑅)(𝑥(.r𝑅) 1 )) = (𝑥(.r𝑅) 1 ) ↔ ( 1 (.r𝐽)(𝑥(.r𝑅) 1 )) = (𝑥(.r𝑅) 1 )))
5251adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (( 1 (.r𝑅)(𝑥(.r𝑅) 1 )) = (𝑥(.r𝑅) 1 ) ↔ ( 1 (.r𝐽)(𝑥(.r𝑅) 1 )) = (𝑥(.r𝑅) 1 )))
5349, 52mpbird 257 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑥(.r𝑅) 1 )) = (𝑥(.r𝑅) 1 ))
5416, 27, 533eqtr3d 2788 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑅)) → ( 1 (.r𝑅)𝑥) = (𝑥(.r𝑅) 1 ))
5554ralrimiva 3152 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)( 1 (.r𝑅)𝑥) = (𝑥(.r𝑅) 1 ))
56 ssidd 4032 . . . 4 (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅))
57 rng2idl1cntr.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
5857, 2mgpbas 20167 . . . . 5 (Base‘𝑅) = (Base‘𝑀)
5957, 14mgpplusg 20165 . . . . 5 (.r𝑅) = (+g𝑀)
60 eqid 2740 . . . . 5 (Cntz‘𝑀) = (Cntz‘𝑀)
6158, 59, 60elcntz 19362 . . . 4 ((Base‘𝑅) ⊆ (Base‘𝑅) → ( 1 ∈ ((Cntz‘𝑀)‘(Base‘𝑅)) ↔ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)( 1 (.r𝑅)𝑥) = (𝑥(.r𝑅) 1 ))))
6256, 61syl 17 . . 3 (𝜑 → ( 1 ∈ ((Cntz‘𝑀)‘(Base‘𝑅)) ↔ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)( 1 (.r𝑅)𝑥) = (𝑥(.r𝑅) 1 ))))
639, 55, 62mpbir2and 712 . 2 (𝜑1 ∈ ((Cntz‘𝑀)‘(Base‘𝑅)))
6458, 60cntrval 19359 . 2 ((Cntz‘𝑀)‘(Base‘𝑅)) = (Cntr‘𝑀)
6563, 64eleqtrdi 2854 1 (𝜑1 ∈ (Cntr‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  .rcmulr 17312  0gc0g 17499  SubGrpcsubg 19160  Cntzccntz 19355  Cntrccntr 19356  mulGrpcmgp 20161  Rngcrng 20179  1rcur 20208  Ringcrg 20260  SubRngcsubrng 20571  LIdealclidl 21239  2Idealc2idl 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-cntz 19357  df-cntr 19358  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-subrng 20572  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-2idl 21283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator