![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sca2rab | Structured version Visualization version GIF version |
Description: If 𝐵 is a scale of 𝐴 by 𝐶, then 𝐴 is a scale of 𝐵 by 1 / 𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) |
Ref | Expression |
---|---|
ovolsca.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ovolsca.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
ovolsca.3 | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) |
Ref | Expression |
---|---|
sca2rab | ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovolsca.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | 1 | sseld 4007 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
3 | 2 | pm4.71rd 562 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
4 | ovolsca.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) | |
5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) |
6 | 5 | eleq2d 2830 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ 𝐵 ↔ ((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})) |
7 | ovolsca.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐶 ∈ ℝ+) |
9 | 8 | rprecred 13110 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (1 / 𝐶) ∈ ℝ) |
10 | remulcl 11269 | . . . . . . . 8 ⊢ (((1 / 𝐶) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 / 𝐶) · 𝑦) ∈ ℝ) | |
11 | 9, 10 | sylancom 587 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((1 / 𝐶) · 𝑦) ∈ ℝ) |
12 | oveq2 7456 | . . . . . . . . 9 ⊢ (𝑥 = ((1 / 𝐶) · 𝑦) → (𝐶 · 𝑥) = (𝐶 · ((1 / 𝐶) · 𝑦))) | |
13 | 12 | eleq1d 2829 | . . . . . . . 8 ⊢ (𝑥 = ((1 / 𝐶) · 𝑦) → ((𝐶 · 𝑥) ∈ 𝐴 ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴)) |
14 | 13 | elrab3 3709 | . . . . . . 7 ⊢ (((1 / 𝐶) · 𝑦) ∈ ℝ → (((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴)) |
15 | 11, 14 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴)) |
16 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
17 | 16 | recnd 11318 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
18 | 8 | rpcnd 13101 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐶 ∈ ℂ) |
19 | 8 | rpne0d 13104 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐶 ≠ 0) |
20 | 17, 18, 19 | divrec2d 12074 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 / 𝐶) = ((1 / 𝐶) · 𝑦)) |
21 | 20 | oveq2d 7464 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐶 · (𝑦 / 𝐶)) = (𝐶 · ((1 / 𝐶) · 𝑦))) |
22 | 17, 18, 19 | divcan2d 12072 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐶 · (𝑦 / 𝐶)) = 𝑦) |
23 | 21, 22 | eqtr3d 2782 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐶 · ((1 / 𝐶) · 𝑦)) = 𝑦) |
24 | 23 | eleq1d 2829 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
25 | 6, 15, 24 | 3bitrd 305 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ 𝐵 ↔ 𝑦 ∈ 𝐴)) |
26 | 25 | pm5.32da 578 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
27 | 3, 26 | bitr4d 282 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵))) |
28 | 27 | eqabdv 2878 | . 2 ⊢ (𝜑 → 𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)}) |
29 | df-rab 3444 | . 2 ⊢ {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)} | |
30 | 28, 29 | eqtr4di 2798 | 1 ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 ⊆ wss 3976 (class class class)co 7448 ℝcr 11183 1c1 11185 · cmul 11189 / cdiv 11947 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-rp 13058 |
This theorem is referenced by: ovolsca 25569 |
Copyright terms: Public domain | W3C validator |