| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sca2rab | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is a scale of 𝐴 by 𝐶, then 𝐴 is a scale of 𝐵 by 1 / 𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| Ref | Expression |
|---|---|
| ovolsca.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| ovolsca.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| ovolsca.3 | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) |
| Ref | Expression |
|---|---|
| sca2rab | ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolsca.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | 1 | sseld 3948 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
| 3 | 2 | pm4.71rd 562 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
| 4 | ovolsca.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) | |
| 5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) |
| 6 | 5 | eleq2d 2815 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ 𝐵 ↔ ((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})) |
| 7 | ovolsca.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐶 ∈ ℝ+) |
| 9 | 8 | rprecred 13013 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (1 / 𝐶) ∈ ℝ) |
| 10 | remulcl 11160 | . . . . . . . 8 ⊢ (((1 / 𝐶) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 / 𝐶) · 𝑦) ∈ ℝ) | |
| 11 | 9, 10 | sylancom 588 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((1 / 𝐶) · 𝑦) ∈ ℝ) |
| 12 | oveq2 7398 | . . . . . . . . 9 ⊢ (𝑥 = ((1 / 𝐶) · 𝑦) → (𝐶 · 𝑥) = (𝐶 · ((1 / 𝐶) · 𝑦))) | |
| 13 | 12 | eleq1d 2814 | . . . . . . . 8 ⊢ (𝑥 = ((1 / 𝐶) · 𝑦) → ((𝐶 · 𝑥) ∈ 𝐴 ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴)) |
| 14 | 13 | elrab3 3663 | . . . . . . 7 ⊢ (((1 / 𝐶) · 𝑦) ∈ ℝ → (((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴)) |
| 15 | 11, 14 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴)) |
| 16 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
| 17 | 16 | recnd 11209 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
| 18 | 8 | rpcnd 13004 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐶 ∈ ℂ) |
| 19 | 8 | rpne0d 13007 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐶 ≠ 0) |
| 20 | 17, 18, 19 | divrec2d 11969 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 / 𝐶) = ((1 / 𝐶) · 𝑦)) |
| 21 | 20 | oveq2d 7406 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐶 · (𝑦 / 𝐶)) = (𝐶 · ((1 / 𝐶) · 𝑦))) |
| 22 | 17, 18, 19 | divcan2d 11967 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐶 · (𝑦 / 𝐶)) = 𝑦) |
| 23 | 21, 22 | eqtr3d 2767 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐶 · ((1 / 𝐶) · 𝑦)) = 𝑦) |
| 24 | 23 | eleq1d 2814 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 25 | 6, 15, 24 | 3bitrd 305 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ 𝐵 ↔ 𝑦 ∈ 𝐴)) |
| 26 | 25 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
| 27 | 3, 26 | bitr4d 282 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵))) |
| 28 | 27 | eqabdv 2862 | . 2 ⊢ (𝜑 → 𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)}) |
| 29 | df-rab 3409 | . 2 ⊢ {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)} | |
| 30 | 28, 29 | eqtr4di 2783 | 1 ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3408 ⊆ wss 3917 (class class class)co 7390 ℝcr 11074 1c1 11076 · cmul 11080 / cdiv 11842 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-rp 12959 |
| This theorem is referenced by: ovolsca 25423 |
| Copyright terms: Public domain | W3C validator |