MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sca2rab Structured version   Visualization version   GIF version

Theorem sca2rab 25566
Description: If 𝐵 is a scale of 𝐴 by 𝐶, then 𝐴 is a scale of 𝐵 by 1 / 𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolsca.1 (𝜑𝐴 ⊆ ℝ)
ovolsca.2 (𝜑𝐶 ∈ ℝ+)
ovolsca.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
Assertion
Ref Expression
sca2rab (𝜑𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem sca2rab
StepHypRef Expression
1 ovolsca.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
21sseld 4007 . . . . 5 (𝜑 → (𝑦𝐴𝑦 ∈ ℝ))
32pm4.71rd 562 . . . 4 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
4 ovolsca.3 . . . . . . . 8 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
54adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
65eleq2d 2830 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ 𝐵 ↔ ((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}))
7 ovolsca.2 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
87adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℝ+)
98rprecred 13110 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (1 / 𝐶) ∈ ℝ)
10 remulcl 11269 . . . . . . . 8 (((1 / 𝐶) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 / 𝐶) · 𝑦) ∈ ℝ)
119, 10sylancom 587 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((1 / 𝐶) · 𝑦) ∈ ℝ)
12 oveq2 7456 . . . . . . . . 9 (𝑥 = ((1 / 𝐶) · 𝑦) → (𝐶 · 𝑥) = (𝐶 · ((1 / 𝐶) · 𝑦)))
1312eleq1d 2829 . . . . . . . 8 (𝑥 = ((1 / 𝐶) · 𝑦) → ((𝐶 · 𝑥) ∈ 𝐴 ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴))
1413elrab3 3709 . . . . . . 7 (((1 / 𝐶) · 𝑦) ∈ ℝ → (((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴))
1511, 14syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴))
16 simpr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1716recnd 11318 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
188rpcnd 13101 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℂ)
198rpne0d 13104 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝐶 ≠ 0)
2017, 18, 19divrec2d 12074 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 𝐶) = ((1 / 𝐶) · 𝑦))
2120oveq2d 7464 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝐶 · (𝑦 / 𝐶)) = (𝐶 · ((1 / 𝐶) · 𝑦)))
2217, 18, 19divcan2d 12072 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
2321, 22eqtr3d 2782 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐶 · ((1 / 𝐶) · 𝑦)) = 𝑦)
2423eleq1d 2829 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴𝑦𝐴))
256, 15, 243bitrd 305 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ 𝐵𝑦𝐴))
2625pm5.32da 578 . . . 4 (𝜑 → ((𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
273, 26bitr4d 282 . . 3 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)))
2827eqabdv 2878 . 2 (𝜑𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)})
29 df-rab 3444 . 2 {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)}
3028, 29eqtr4di 2798 1 (𝜑𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  {crab 3443  wss 3976  (class class class)co 7448  cr 11183  1c1 11185   · cmul 11189   / cdiv 11947  +crp 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-rp 13058
This theorem is referenced by:  ovolsca  25569
  Copyright terms: Public domain W3C validator