MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sca2rab Structured version   Visualization version   GIF version

Theorem sca2rab 25560
Description: If 𝐵 is a scale of 𝐴 by 𝐶, then 𝐴 is a scale of 𝐵 by 1 / 𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolsca.1 (𝜑𝐴 ⊆ ℝ)
ovolsca.2 (𝜑𝐶 ∈ ℝ+)
ovolsca.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
Assertion
Ref Expression
sca2rab (𝜑𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem sca2rab
StepHypRef Expression
1 ovolsca.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
21sseld 3993 . . . . 5 (𝜑 → (𝑦𝐴𝑦 ∈ ℝ))
32pm4.71rd 562 . . . 4 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
4 ovolsca.3 . . . . . . . 8 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
54adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
65eleq2d 2824 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ 𝐵 ↔ ((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}))
7 ovolsca.2 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
87adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℝ+)
98rprecred 13085 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (1 / 𝐶) ∈ ℝ)
10 remulcl 11237 . . . . . . . 8 (((1 / 𝐶) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 / 𝐶) · 𝑦) ∈ ℝ)
119, 10sylancom 588 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((1 / 𝐶) · 𝑦) ∈ ℝ)
12 oveq2 7438 . . . . . . . . 9 (𝑥 = ((1 / 𝐶) · 𝑦) → (𝐶 · 𝑥) = (𝐶 · ((1 / 𝐶) · 𝑦)))
1312eleq1d 2823 . . . . . . . 8 (𝑥 = ((1 / 𝐶) · 𝑦) → ((𝐶 · 𝑥) ∈ 𝐴 ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴))
1413elrab3 3695 . . . . . . 7 (((1 / 𝐶) · 𝑦) ∈ ℝ → (((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴))
1511, 14syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴))
16 simpr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1716recnd 11286 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
188rpcnd 13076 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℂ)
198rpne0d 13079 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝐶 ≠ 0)
2017, 18, 19divrec2d 12044 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 𝐶) = ((1 / 𝐶) · 𝑦))
2120oveq2d 7446 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝐶 · (𝑦 / 𝐶)) = (𝐶 · ((1 / 𝐶) · 𝑦)))
2217, 18, 19divcan2d 12042 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
2321, 22eqtr3d 2776 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐶 · ((1 / 𝐶) · 𝑦)) = 𝑦)
2423eleq1d 2823 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴𝑦𝐴))
256, 15, 243bitrd 305 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ 𝐵𝑦𝐴))
2625pm5.32da 579 . . . 4 (𝜑 → ((𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
273, 26bitr4d 282 . . 3 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)))
2827eqabdv 2872 . 2 (𝜑𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)})
29 df-rab 3433 . 2 {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)}
3028, 29eqtr4di 2792 1 (𝜑𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  {cab 2711  {crab 3432  wss 3962  (class class class)co 7430  cr 11151  1c1 11153   · cmul 11157   / cdiv 11917  +crp 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-rp 13032
This theorem is referenced by:  ovolsca  25563
  Copyright terms: Public domain W3C validator