MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sca2rab Structured version   Visualization version   GIF version

Theorem sca2rab 24581
Description: If 𝐵 is a scale of 𝐴 by 𝐶, then 𝐴 is a scale of 𝐵 by 1 / 𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolsca.1 (𝜑𝐴 ⊆ ℝ)
ovolsca.2 (𝜑𝐶 ∈ ℝ+)
ovolsca.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
Assertion
Ref Expression
sca2rab (𝜑𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem sca2rab
StepHypRef Expression
1 ovolsca.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
21sseld 3916 . . . . 5 (𝜑 → (𝑦𝐴𝑦 ∈ ℝ))
32pm4.71rd 562 . . . 4 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
4 ovolsca.3 . . . . . . . 8 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
54adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴})
65eleq2d 2824 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ 𝐵 ↔ ((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}))
7 ovolsca.2 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
87adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℝ+)
98rprecred 12712 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (1 / 𝐶) ∈ ℝ)
10 remulcl 10887 . . . . . . . 8 (((1 / 𝐶) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 / 𝐶) · 𝑦) ∈ ℝ)
119, 10sylancom 587 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((1 / 𝐶) · 𝑦) ∈ ℝ)
12 oveq2 7263 . . . . . . . . 9 (𝑥 = ((1 / 𝐶) · 𝑦) → (𝐶 · 𝑥) = (𝐶 · ((1 / 𝐶) · 𝑦)))
1312eleq1d 2823 . . . . . . . 8 (𝑥 = ((1 / 𝐶) · 𝑦) → ((𝐶 · 𝑥) ∈ 𝐴 ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴))
1413elrab3 3618 . . . . . . 7 (((1 / 𝐶) · 𝑦) ∈ ℝ → (((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴))
1511, 14syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ↔ (𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴))
16 simpr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1716recnd 10934 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
188rpcnd 12703 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝐶 ∈ ℂ)
198rpne0d 12706 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝐶 ≠ 0)
2017, 18, 19divrec2d 11685 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 𝐶) = ((1 / 𝐶) · 𝑦))
2120oveq2d 7271 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝐶 · (𝑦 / 𝐶)) = (𝐶 · ((1 / 𝐶) · 𝑦)))
2217, 18, 19divcan2d 11683 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝐶 · (𝑦 / 𝐶)) = 𝑦)
2321, 22eqtr3d 2780 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐶 · ((1 / 𝐶) · 𝑦)) = 𝑦)
2423eleq1d 2823 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝐶 · ((1 / 𝐶) · 𝑦)) ∈ 𝐴𝑦𝐴))
256, 15, 243bitrd 304 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (((1 / 𝐶) · 𝑦) ∈ 𝐵𝑦𝐴))
2625pm5.32da 578 . . . 4 (𝜑 → ((𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
273, 26bitr4d 281 . . 3 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)))
2827abbi2dv 2876 . 2 (𝜑𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)})
29 df-rab 3072 . 2 {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ ((1 / 𝐶) · 𝑦) ∈ 𝐵)}
3028, 29eqtr4di 2797 1 (𝜑𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  {crab 3067  wss 3883  (class class class)co 7255  cr 10801  1c1 10803   · cmul 10807   / cdiv 11562  +crp 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-rp 12660
This theorem is referenced by:  ovolsca  24584
  Copyright terms: Public domain W3C validator