MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnblcld Structured version   Visualization version   GIF version

Theorem cnblcld 23626
Description: Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cnblcld (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅})
Distinct variable groups:   𝑥,𝐷   𝑥,𝑅

Proof of Theorem cnblcld
StepHypRef Expression
1 absf 14866 . . . . 5 abs:ℂ⟶ℝ
2 ffn 6523 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
3 elpreima 6856 . . . . 5 (abs Fn ℂ → (𝑥 ∈ (abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅))))
41, 2, 3mp2b 10 . . . 4 (𝑥 ∈ (abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅)))
5 df-3an 1091 . . . . . . 7 (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅) ↔ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) ≤ 𝑅))
6 abscl 14807 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
76rexrd 10848 . . . . . . . . . 10 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ*)
8 absge0 14816 . . . . . . . . . 10 (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥))
97, 8jca 515 . . . . . . . . 9 (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)))
109adantl 485 . . . . . . . 8 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)))
1110biantrurd 536 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ≤ 𝑅 ↔ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) ≤ 𝑅)))
125, 11bitr4id 293 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅) ↔ (abs‘𝑥) ≤ 𝑅))
13 0xr 10845 . . . . . . 7 0 ∈ ℝ*
14 simpl 486 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*)
15 elicc1 12944 . . . . . . 7 ((0 ∈ ℝ*𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅)))
1613, 14, 15sylancr 590 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅)))
17 0cn 10790 . . . . . . . . . 10 0 ∈ ℂ
18 cnblcld.1 . . . . . . . . . . . 12 𝐷 = (abs ∘ − )
1918cnmetdval 23622 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥)))
20 abssub 14855 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0)))
2119, 20eqtrd 2771 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
2217, 21mpan 690 . . . . . . . . 9 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
23 subid1 11063 . . . . . . . . . 10 (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥)
2423fveq2d 6699 . . . . . . . . 9 (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥))
2522, 24eqtrd 2771 . . . . . . . 8 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥))
2625adantl 485 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥))
2726breq1d 5049 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((0𝐷𝑥) ≤ 𝑅 ↔ (abs‘𝑥) ≤ 𝑅))
2812, 16, 273bitr4d 314 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ (0𝐷𝑥) ≤ 𝑅))
2928pm5.32da 582 . . . 4 (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)))
304, 29syl5bb 286 . . 3 (𝑅 ∈ ℝ* → (𝑥 ∈ (abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)))
3130abbi2dv 2867 . 2 (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)})
32 df-rab 3060 . 2 {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)}
3331, 32eqtr4di 2789 1 (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  {cab 2714  {crab 3055   class class class wbr 5039  ccnv 5535  cima 5539  ccom 5540   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  *cxr 10831  cle 10833  cmin 11027  [,]cicc 12903  abscabs 14762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-icc 12907  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator