![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnblcld | Structured version Visualization version GIF version |
Description: Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.) |
Ref | Expression |
---|---|
cnblcld.1 | ⊢ 𝐷 = (abs ∘ − ) |
Ref | Expression |
---|---|
cnblcld | ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absf 14519 | . . . . 5 ⊢ abs:ℂ⟶ℝ | |
2 | ffn 6374 | . . . . 5 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
3 | elpreima 6684 | . . . . 5 ⊢ (abs Fn ℂ → (𝑥 ∈ (◡abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅)))) | |
4 | 1, 2, 3 | mp2b 10 | . . . 4 ⊢ (𝑥 ∈ (◡abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅))) |
5 | abscl 14460 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ) | |
6 | 5 | rexrd 10526 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ*) |
7 | absge0 14469 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥)) | |
8 | 6, 7 | jca 512 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥))) |
9 | 8 | adantl 482 | . . . . . . . 8 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥))) |
10 | 9 | biantrurd 533 | . . . . . . 7 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ≤ 𝑅 ↔ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) ≤ 𝑅))) |
11 | df-3an 1080 | . . . . . . 7 ⊢ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅) ↔ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) ≤ 𝑅)) | |
12 | 10, 11 | syl6rbbr 291 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅) ↔ (abs‘𝑥) ≤ 𝑅)) |
13 | 0xr 10523 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
14 | simpl 483 | . . . . . . 7 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*) | |
15 | elicc1 12621 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅))) | |
16 | 13, 14, 15 | sylancr 587 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅))) |
17 | 0cn 10468 | . . . . . . . . . 10 ⊢ 0 ∈ ℂ | |
18 | cnblcld.1 | . . . . . . . . . . . 12 ⊢ 𝐷 = (abs ∘ − ) | |
19 | 18 | cnmetdval 23050 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥))) |
20 | abssub 14508 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0))) | |
21 | 19, 20 | eqtrd 2829 | . . . . . . . . . 10 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0))) |
22 | 17, 21 | mpan 686 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0))) |
23 | subid1 10743 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥) | |
24 | 23 | fveq2d 6534 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥)) |
25 | 22, 24 | eqtrd 2829 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥)) |
26 | 25 | adantl 482 | . . . . . . 7 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥)) |
27 | 26 | breq1d 4966 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((0𝐷𝑥) ≤ 𝑅 ↔ (abs‘𝑥) ≤ 𝑅)) |
28 | 12, 16, 27 | 3bitr4d 312 | . . . . 5 ⊢ ((𝑅 ∈ ℝ* ∧ 𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ (0𝐷𝑥) ≤ 𝑅)) |
29 | 28 | pm5.32da 579 | . . . 4 ⊢ (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅))) |
30 | 4, 29 | syl5bb 284 | . . 3 ⊢ (𝑅 ∈ ℝ* → (𝑥 ∈ (◡abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅))) |
31 | 30 | abbi2dv 2917 | . 2 ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)}) |
32 | df-rab 3112 | . 2 ⊢ {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)} | |
33 | 31, 32 | syl6eqr 2847 | 1 ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 {cab 2773 {crab 3107 class class class wbr 4956 ◡ccnv 5434 “ cima 5438 ∘ ccom 5439 Fn wfn 6212 ⟶wf 6213 ‘cfv 6217 (class class class)co 7007 ℂcc 10370 ℝcr 10371 0cc0 10372 ℝ*cxr 10509 ≤ cle 10511 − cmin 10706 [,]cicc 12580 abscabs 14415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 ax-pre-sup 10450 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-sup 8742 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-div 11135 df-nn 11476 df-2 11537 df-3 11538 df-n0 11735 df-z 11819 df-uz 12083 df-rp 12229 df-icc 12584 df-seq 13208 df-exp 13268 df-cj 14280 df-re 14281 df-im 14282 df-sqrt 14416 df-abs 14417 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |