MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnblcld Structured version   Visualization version   GIF version

Theorem cnblcld 23383
Description: Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cnblcld (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅})
Distinct variable groups:   𝑥,𝐷   𝑥,𝑅

Proof of Theorem cnblcld
StepHypRef Expression
1 absf 14697 . . . . 5 abs:ℂ⟶ℝ
2 ffn 6514 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
3 elpreima 6828 . . . . 5 (abs Fn ℂ → (𝑥 ∈ (abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅))))
41, 2, 3mp2b 10 . . . 4 (𝑥 ∈ (abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅)))
5 abscl 14638 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
65rexrd 10691 . . . . . . . . . 10 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ*)
7 absge0 14647 . . . . . . . . . 10 (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥))
86, 7jca 514 . . . . . . . . 9 (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)))
98adantl 484 . . . . . . . 8 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)))
109biantrurd 535 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ≤ 𝑅 ↔ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) ≤ 𝑅)))
11 df-3an 1085 . . . . . . 7 (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅) ↔ (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) ≤ 𝑅))
1210, 11syl6rbbr 292 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅) ↔ (abs‘𝑥) ≤ 𝑅))
13 0xr 10688 . . . . . . 7 0 ∈ ℝ*
14 simpl 485 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*)
15 elicc1 12783 . . . . . . 7 ((0 ∈ ℝ*𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅)))
1613, 14, 15sylancr 589 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ ((abs‘𝑥) ∈ ℝ* ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≤ 𝑅)))
17 0cn 10633 . . . . . . . . . 10 0 ∈ ℂ
18 cnblcld.1 . . . . . . . . . . . 12 𝐷 = (abs ∘ − )
1918cnmetdval 23379 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥)))
20 abssub 14686 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0)))
2119, 20eqtrd 2856 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
2217, 21mpan 688 . . . . . . . . 9 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
23 subid1 10906 . . . . . . . . . 10 (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥)
2423fveq2d 6674 . . . . . . . . 9 (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥))
2522, 24eqtrd 2856 . . . . . . . 8 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥))
2625adantl 484 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥))
2726breq1d 5076 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((0𝐷𝑥) ≤ 𝑅 ↔ (abs‘𝑥) ≤ 𝑅))
2812, 16, 273bitr4d 313 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,]𝑅) ↔ (0𝐷𝑥) ≤ 𝑅))
2928pm5.32da 581 . . . 4 (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)))
304, 29syl5bb 285 . . 3 (𝑅 ∈ ℝ* → (𝑥 ∈ (abs “ (0[,]𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)))
3130abbi2dv 2950 . 2 (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)})
32 df-rab 3147 . 2 {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) ≤ 𝑅)}
3331, 32syl6eqr 2874 1 (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  {crab 3142   class class class wbr 5066  ccnv 5554  cima 5558  ccom 5559   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  *cxr 10674  cle 10676  cmin 10870  [,]cicc 12742  abscabs 14593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-icc 12746  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator