| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsppr | Structured version Visualization version GIF version | ||
| Description: Span of a pair of vectors. (Contributed by NM, 22-Aug-2014.) |
| Ref | Expression |
|---|---|
| lsppr.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsppr.a | ⊢ + = (+g‘𝑊) |
| lsppr.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lsppr.k | ⊢ 𝐾 = (Base‘𝐹) |
| lsppr.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lsppr.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsppr.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lsppr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lsppr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lsppr | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4629 | . . 3 ⊢ {𝑋, 𝑌} = ({𝑋} ∪ {𝑌}) | |
| 2 | 1 | fveq2i 6909 | . 2 ⊢ (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌})) |
| 3 | lsppr.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 4 | lsppr.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 5 | 4 | snssd 4809 | . . . 4 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
| 6 | lsppr.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 7 | 6 | snssd 4809 | . . . 4 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
| 8 | lsppr.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | lsppr.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | 8, 9 | lspun 20985 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉 ∧ {𝑌} ⊆ 𝑉) → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
| 11 | 3, 5, 7, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
| 12 | eqid 2737 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 13 | 8, 12, 9 | lspsncl 20975 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 14 | 3, 4, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 15 | 8, 12, 9 | lspsncl 20975 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 16 | 3, 6, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 17 | eqid 2737 | . . . . 5 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 18 | 12, 9, 17 | lsmsp 21085 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
| 19 | 3, 14, 16, 18 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
| 20 | lsppr.a | . . . . 5 ⊢ + = (+g‘𝑊) | |
| 21 | lsppr.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 22 | lsppr.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 23 | lsppr.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 24 | 8, 20, 21, 22, 23, 17, 9, 3, 4, 6 | lsmspsn 21083 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ↔ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)))) |
| 25 | 24 | eqabdv 2875 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}) |
| 26 | 11, 19, 25 | 3eqtr2d 2783 | . 2 ⊢ (𝜑 → (𝑁‘({𝑋} ∪ {𝑌})) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}) |
| 27 | 2, 26 | eqtrid 2789 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {cab 2714 ∃wrex 3070 ∪ cun 3949 ⊆ wss 3951 {csn 4626 {cpr 4628 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 Scalarcsca 17300 ·𝑠 cvsca 17301 LSSumclsm 19652 LModclmod 20858 LSubSpclss 20929 LSpanclspn 20969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-subg 19141 df-cntz 19335 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-ur 20179 df-ring 20232 df-lmod 20860 df-lss 20930 df-lsp 20970 |
| This theorem is referenced by: lspprel 21093 |
| Copyright terms: Public domain | W3C validator |