| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsppr | Structured version Visualization version GIF version | ||
| Description: Span of a pair of vectors. (Contributed by NM, 22-Aug-2014.) |
| Ref | Expression |
|---|---|
| lsppr.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsppr.a | ⊢ + = (+g‘𝑊) |
| lsppr.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lsppr.k | ⊢ 𝐾 = (Base‘𝐹) |
| lsppr.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lsppr.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsppr.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lsppr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lsppr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lsppr | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4580 | . . 3 ⊢ {𝑋, 𝑌} = ({𝑋} ∪ {𝑌}) | |
| 2 | 1 | fveq2i 6834 | . 2 ⊢ (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌})) |
| 3 | lsppr.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 4 | lsppr.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 5 | 4 | snssd 4762 | . . . 4 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
| 6 | lsppr.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 7 | 6 | snssd 4762 | . . . 4 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
| 8 | lsppr.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | lsppr.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | 8, 9 | lspun 20929 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉 ∧ {𝑌} ⊆ 𝑉) → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
| 11 | 3, 5, 7, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
| 12 | eqid 2733 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 13 | 8, 12, 9 | lspsncl 20919 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 14 | 3, 4, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 15 | 8, 12, 9 | lspsncl 20919 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 16 | 3, 6, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 17 | eqid 2733 | . . . . 5 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 18 | 12, 9, 17 | lsmsp 21029 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
| 19 | 3, 14, 16, 18 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
| 20 | lsppr.a | . . . . 5 ⊢ + = (+g‘𝑊) | |
| 21 | lsppr.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 22 | lsppr.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 23 | lsppr.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 24 | 8, 20, 21, 22, 23, 17, 9, 3, 4, 6 | lsmspsn 21027 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ↔ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)))) |
| 25 | 24 | eqabdv 2866 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}) |
| 26 | 11, 19, 25 | 3eqtr2d 2774 | . 2 ⊢ (𝜑 → (𝑁‘({𝑋} ∪ {𝑌})) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}) |
| 27 | 2, 26 | eqtrid 2780 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3057 ∪ cun 3896 ⊆ wss 3898 {csn 4577 {cpr 4579 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 Scalarcsca 17171 ·𝑠 cvsca 17172 LSSumclsm 19554 LModclmod 20802 LSubSpclss 20873 LSpanclspn 20913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-cntz 19237 df-lsm 19556 df-cmn 19702 df-abl 19703 df-mgp 20067 df-ur 20108 df-ring 20161 df-lmod 20804 df-lss 20874 df-lsp 20914 |
| This theorem is referenced by: lspprel 21037 |
| Copyright terms: Public domain | W3C validator |