![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsppr | Structured version Visualization version GIF version |
Description: Span of a pair of vectors. (Contributed by NM, 22-Aug-2014.) |
Ref | Expression |
---|---|
lsppr.v | β’ π = (Baseβπ) |
lsppr.a | β’ + = (+gβπ) |
lsppr.f | β’ πΉ = (Scalarβπ) |
lsppr.k | β’ πΎ = (BaseβπΉ) |
lsppr.t | β’ Β· = ( Β·π βπ) |
lsppr.n | β’ π = (LSpanβπ) |
lsppr.w | β’ (π β π β LMod) |
lsppr.x | β’ (π β π β π) |
lsppr.y | β’ (π β π β π) |
Ref | Expression |
---|---|
lsppr | β’ (π β (πβ{π, π}) = {π£ β£ βπ β πΎ βπ β πΎ π£ = ((π Β· π) + (π Β· π))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4631 | . . 3 β’ {π, π} = ({π} βͺ {π}) | |
2 | 1 | fveq2i 6894 | . 2 β’ (πβ{π, π}) = (πβ({π} βͺ {π})) |
3 | lsppr.w | . . . 4 β’ (π β π β LMod) | |
4 | lsppr.x | . . . . 5 β’ (π β π β π) | |
5 | 4 | snssd 4812 | . . . 4 β’ (π β {π} β π) |
6 | lsppr.y | . . . . 5 β’ (π β π β π) | |
7 | 6 | snssd 4812 | . . . 4 β’ (π β {π} β π) |
8 | lsppr.v | . . . . 5 β’ π = (Baseβπ) | |
9 | lsppr.n | . . . . 5 β’ π = (LSpanβπ) | |
10 | 8, 9 | lspun 20597 | . . . 4 β’ ((π β LMod β§ {π} β π β§ {π} β π) β (πβ({π} βͺ {π})) = (πβ((πβ{π}) βͺ (πβ{π})))) |
11 | 3, 5, 7, 10 | syl3anc 1371 | . . 3 β’ (π β (πβ({π} βͺ {π})) = (πβ((πβ{π}) βͺ (πβ{π})))) |
12 | eqid 2732 | . . . . . 6 β’ (LSubSpβπ) = (LSubSpβπ) | |
13 | 8, 12, 9 | lspsncl 20587 | . . . . 5 β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
14 | 3, 4, 13 | syl2anc 584 | . . . 4 β’ (π β (πβ{π}) β (LSubSpβπ)) |
15 | 8, 12, 9 | lspsncl 20587 | . . . . 5 β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
16 | 3, 6, 15 | syl2anc 584 | . . . 4 β’ (π β (πβ{π}) β (LSubSpβπ)) |
17 | eqid 2732 | . . . . 5 β’ (LSSumβπ) = (LSSumβπ) | |
18 | 12, 9, 17 | lsmsp 20696 | . . . 4 β’ ((π β LMod β§ (πβ{π}) β (LSubSpβπ) β§ (πβ{π}) β (LSubSpβπ)) β ((πβ{π})(LSSumβπ)(πβ{π})) = (πβ((πβ{π}) βͺ (πβ{π})))) |
19 | 3, 14, 16, 18 | syl3anc 1371 | . . 3 β’ (π β ((πβ{π})(LSSumβπ)(πβ{π})) = (πβ((πβ{π}) βͺ (πβ{π})))) |
20 | lsppr.a | . . . . 5 β’ + = (+gβπ) | |
21 | lsppr.f | . . . . 5 β’ πΉ = (Scalarβπ) | |
22 | lsppr.k | . . . . 5 β’ πΎ = (BaseβπΉ) | |
23 | lsppr.t | . . . . 5 β’ Β· = ( Β·π βπ) | |
24 | 8, 20, 21, 22, 23, 17, 9, 3, 4, 6 | lsmspsn 20694 | . . . 4 β’ (π β (π£ β ((πβ{π})(LSSumβπ)(πβ{π})) β βπ β πΎ βπ β πΎ π£ = ((π Β· π) + (π Β· π)))) |
25 | 24 | eqabdv 2867 | . . 3 β’ (π β ((πβ{π})(LSSumβπ)(πβ{π})) = {π£ β£ βπ β πΎ βπ β πΎ π£ = ((π Β· π) + (π Β· π))}) |
26 | 11, 19, 25 | 3eqtr2d 2778 | . 2 β’ (π β (πβ({π} βͺ {π})) = {π£ β£ βπ β πΎ βπ β πΎ π£ = ((π Β· π) + (π Β· π))}) |
27 | 2, 26 | eqtrid 2784 | 1 β’ (π β (πβ{π, π}) = {π£ β£ βπ β πΎ βπ β πΎ π£ = ((π Β· π) + (π Β· π))}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {cab 2709 βwrex 3070 βͺ cun 3946 β wss 3948 {csn 4628 {cpr 4630 βcfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 Scalarcsca 17199 Β·π cvsca 17200 LSSumclsm 19501 LModclmod 20470 LSubSpclss 20541 LSpanclspn 20581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-grp 18821 df-minusg 18822 df-sbg 18823 df-subg 19002 df-cntz 19180 df-lsm 19503 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-lmod 20472 df-lss 20542 df-lsp 20582 |
This theorem is referenced by: lspprel 20704 |
Copyright terms: Public domain | W3C validator |