MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppr Structured version   Visualization version   GIF version

Theorem lsppr 21051
Description: Span of a pair of vectors. (Contributed by NM, 22-Aug-2014.)
Hypotheses
Ref Expression
lsppr.v 𝑉 = (Base‘𝑊)
lsppr.a + = (+g𝑊)
lsppr.f 𝐹 = (Scalar‘𝑊)
lsppr.k 𝐾 = (Base‘𝐹)
lsppr.t · = ( ·𝑠𝑊)
lsppr.n 𝑁 = (LSpan‘𝑊)
lsppr.w (𝜑𝑊 ∈ LMod)
lsppr.x (𝜑𝑋𝑉)
lsppr.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lsppr (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
Distinct variable groups:   𝑘,𝑙, +   𝑘,𝐹,𝑙   𝑘,𝐾,𝑙   𝑣,𝑘,𝑁,𝑙   · ,𝑘,𝑙   𝑘,𝑉,𝑙   𝑘,𝑊,𝑙,𝑣   𝑘,𝑋,𝑙,𝑣   𝑘,𝑌,𝑙,𝑣   𝜑,𝑘,𝑙,𝑣
Allowed substitution hints:   + (𝑣)   · (𝑣)   𝐹(𝑣)   𝐾(𝑣)   𝑉(𝑣)

Proof of Theorem lsppr
StepHypRef Expression
1 df-pr 4604 . . 3 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
21fveq2i 6879 . 2 (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌}))
3 lsppr.w . . . 4 (𝜑𝑊 ∈ LMod)
4 lsppr.x . . . . 5 (𝜑𝑋𝑉)
54snssd 4785 . . . 4 (𝜑 → {𝑋} ⊆ 𝑉)
6 lsppr.y . . . . 5 (𝜑𝑌𝑉)
76snssd 4785 . . . 4 (𝜑 → {𝑌} ⊆ 𝑉)
8 lsppr.v . . . . 5 𝑉 = (Base‘𝑊)
9 lsppr.n . . . . 5 𝑁 = (LSpan‘𝑊)
108, 9lspun 20944 . . . 4 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉 ∧ {𝑌} ⊆ 𝑉) → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))))
113, 5, 7, 10syl3anc 1373 . . 3 (𝜑 → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))))
12 eqid 2735 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
138, 12, 9lspsncl 20934 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
143, 4, 13syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
158, 12, 9lspsncl 20934 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
163, 6, 15syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
17 eqid 2735 . . . . 5 (LSSum‘𝑊) = (LSSum‘𝑊)
1812, 9, 17lsmsp 21044 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))))
193, 14, 16, 18syl3anc 1373 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))))
20 lsppr.a . . . . 5 + = (+g𝑊)
21 lsppr.f . . . . 5 𝐹 = (Scalar‘𝑊)
22 lsppr.k . . . . 5 𝐾 = (Base‘𝐹)
23 lsppr.t . . . . 5 · = ( ·𝑠𝑊)
248, 20, 21, 22, 23, 17, 9, 3, 4, 6lsmspsn 21042 . . . 4 (𝜑 → (𝑣 ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ↔ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))))
2524eqabdv 2868 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
2611, 19, 253eqtr2d 2776 . 2 (𝜑 → (𝑁‘({𝑋} ∪ {𝑌})) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
272, 26eqtrid 2782 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {cab 2713  wrex 3060  cun 3924  wss 3926  {csn 4601  {cpr 4603  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Scalarcsca 17274   ·𝑠 cvsca 17275  LSSumclsm 19615  LModclmod 20817  LSubSpclss 20888  LSpanclspn 20928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cntz 19300  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-ur 20142  df-ring 20195  df-lmod 20819  df-lss 20889  df-lsp 20929
This theorem is referenced by:  lspprel  21052
  Copyright terms: Public domain W3C validator