MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppr Structured version   Visualization version   GIF version

Theorem lsppr 21022
Description: Span of a pair of vectors. (Contributed by NM, 22-Aug-2014.)
Hypotheses
Ref Expression
lsppr.v 𝑉 = (Base‘𝑊)
lsppr.a + = (+g𝑊)
lsppr.f 𝐹 = (Scalar‘𝑊)
lsppr.k 𝐾 = (Base‘𝐹)
lsppr.t · = ( ·𝑠𝑊)
lsppr.n 𝑁 = (LSpan‘𝑊)
lsppr.w (𝜑𝑊 ∈ LMod)
lsppr.x (𝜑𝑋𝑉)
lsppr.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lsppr (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
Distinct variable groups:   𝑘,𝑙, +   𝑘,𝐹,𝑙   𝑘,𝐾,𝑙   𝑣,𝑘,𝑁,𝑙   · ,𝑘,𝑙   𝑘,𝑉,𝑙   𝑘,𝑊,𝑙,𝑣   𝑘,𝑋,𝑙,𝑣   𝑘,𝑌,𝑙,𝑣   𝜑,𝑘,𝑙,𝑣
Allowed substitution hints:   + (𝑣)   · (𝑣)   𝐹(𝑣)   𝐾(𝑣)   𝑉(𝑣)

Proof of Theorem lsppr
StepHypRef Expression
1 df-pr 4574 . . 3 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
21fveq2i 6820 . 2 (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌}))
3 lsppr.w . . . 4 (𝜑𝑊 ∈ LMod)
4 lsppr.x . . . . 5 (𝜑𝑋𝑉)
54snssd 4756 . . . 4 (𝜑 → {𝑋} ⊆ 𝑉)
6 lsppr.y . . . . 5 (𝜑𝑌𝑉)
76snssd 4756 . . . 4 (𝜑 → {𝑌} ⊆ 𝑉)
8 lsppr.v . . . . 5 𝑉 = (Base‘𝑊)
9 lsppr.n . . . . 5 𝑁 = (LSpan‘𝑊)
108, 9lspun 20915 . . . 4 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉 ∧ {𝑌} ⊆ 𝑉) → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))))
113, 5, 7, 10syl3anc 1373 . . 3 (𝜑 → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))))
12 eqid 2731 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
138, 12, 9lspsncl 20905 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
143, 4, 13syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
158, 12, 9lspsncl 20905 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
163, 6, 15syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
17 eqid 2731 . . . . 5 (LSSum‘𝑊) = (LSSum‘𝑊)
1812, 9, 17lsmsp 21015 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))))
193, 14, 16, 18syl3anc 1373 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))))
20 lsppr.a . . . . 5 + = (+g𝑊)
21 lsppr.f . . . . 5 𝐹 = (Scalar‘𝑊)
22 lsppr.k . . . . 5 𝐾 = (Base‘𝐹)
23 lsppr.t . . . . 5 · = ( ·𝑠𝑊)
248, 20, 21, 22, 23, 17, 9, 3, 4, 6lsmspsn 21013 . . . 4 (𝜑 → (𝑣 ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ↔ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))))
2524eqabdv 2864 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
2611, 19, 253eqtr2d 2772 . 2 (𝜑 → (𝑁‘({𝑋} ∪ {𝑌})) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
272, 26eqtrid 2778 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  cun 3895  wss 3897  {csn 4571  {cpr 4573  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  Scalarcsca 17159   ·𝑠 cvsca 17160  LSSumclsm 19541  LModclmod 20788  LSubSpclss 20859  LSpanclspn 20899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19224  df-lsm 19543  df-cmn 19689  df-abl 19690  df-mgp 20054  df-ur 20095  df-ring 20148  df-lmod 20790  df-lss 20860  df-lsp 20900
This theorem is referenced by:  lspprel  21023
  Copyright terms: Public domain W3C validator