MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppr Structured version   Visualization version   GIF version

Theorem lsppr 19452
Description: Span of a pair of vectors. (Contributed by NM, 22-Aug-2014.)
Hypotheses
Ref Expression
lsppr.v 𝑉 = (Base‘𝑊)
lsppr.a + = (+g𝑊)
lsppr.f 𝐹 = (Scalar‘𝑊)
lsppr.k 𝐾 = (Base‘𝐹)
lsppr.t · = ( ·𝑠𝑊)
lsppr.n 𝑁 = (LSpan‘𝑊)
lsppr.w (𝜑𝑊 ∈ LMod)
lsppr.x (𝜑𝑋𝑉)
lsppr.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lsppr (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
Distinct variable groups:   𝑘,𝑙, +   𝑘,𝐹,𝑙   𝑘,𝐾,𝑙   𝑣,𝑘,𝑁,𝑙   · ,𝑘,𝑙   𝑘,𝑉,𝑙   𝑘,𝑊,𝑙,𝑣   𝑘,𝑋,𝑙,𝑣   𝑘,𝑌,𝑙,𝑣   𝜑,𝑘,𝑙,𝑣
Allowed substitution hints:   + (𝑣)   · (𝑣)   𝐹(𝑣)   𝐾(𝑣)   𝑉(𝑣)

Proof of Theorem lsppr
StepHypRef Expression
1 df-pr 4400 . . 3 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
21fveq2i 6436 . 2 (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌}))
3 lsppr.w . . . 4 (𝜑𝑊 ∈ LMod)
4 lsppr.x . . . . 5 (𝜑𝑋𝑉)
54snssd 4558 . . . 4 (𝜑 → {𝑋} ⊆ 𝑉)
6 lsppr.y . . . . 5 (𝜑𝑌𝑉)
76snssd 4558 . . . 4 (𝜑 → {𝑌} ⊆ 𝑉)
8 lsppr.v . . . . 5 𝑉 = (Base‘𝑊)
9 lsppr.n . . . . 5 𝑁 = (LSpan‘𝑊)
108, 9lspun 19346 . . . 4 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉 ∧ {𝑌} ⊆ 𝑉) → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))))
113, 5, 7, 10syl3anc 1496 . . 3 (𝜑 → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))))
12 eqid 2825 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
138, 12, 9lspsncl 19336 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
143, 4, 13syl2anc 581 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
158, 12, 9lspsncl 19336 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
163, 6, 15syl2anc 581 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
17 eqid 2825 . . . . 5 (LSSum‘𝑊) = (LSSum‘𝑊)
1812, 9, 17lsmsp 19445 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))))
193, 14, 16, 18syl3anc 1496 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))))
20 lsppr.a . . . . 5 + = (+g𝑊)
21 lsppr.f . . . . 5 𝐹 = (Scalar‘𝑊)
22 lsppr.k . . . . 5 𝐾 = (Base‘𝐹)
23 lsppr.t . . . . 5 · = ( ·𝑠𝑊)
248, 20, 21, 22, 23, 17, 9, 3, 4, 6lsmspsn 19443 . . . 4 (𝜑 → (𝑣 ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ↔ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))))
2524abbi2dv 2947 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
2611, 19, 253eqtr2d 2867 . 2 (𝜑 → (𝑁‘({𝑋} ∪ {𝑌})) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
272, 26syl5eq 2873 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  {cab 2811  wrex 3118  cun 3796  wss 3798  {csn 4397  {cpr 4399  cfv 6123  (class class class)co 6905  Basecbs 16222  +gcplusg 16305  Scalarcsca 16308   ·𝑠 cvsca 16309  LSSumclsm 18400  LModclmod 19219  LSubSpclss 19288  LSpanclspn 19330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-grp 17779  df-minusg 17780  df-sbg 17781  df-subg 17942  df-cntz 18100  df-lsm 18402  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-lmod 19221  df-lss 19289  df-lsp 19331
This theorem is referenced by:  lspprel  19453
  Copyright terms: Public domain W3C validator