MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shft2rab Structured version   Visualization version   GIF version

Theorem shft2rab 24672
Description: If 𝐵 is a shift of 𝐴 by 𝐶, then 𝐴 is a shift of 𝐵 by -𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) (Revised by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
ovolshft.1 (𝜑𝐴 ⊆ ℝ)
ovolshft.2 (𝜑𝐶 ∈ ℝ)
ovolshft.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
Assertion
Ref Expression
shft2rab (𝜑𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐵   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem shft2rab
StepHypRef Expression
1 ovolshft.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
21sseld 3920 . . . . 5 (𝜑 → (𝑦𝐴𝑦 ∈ ℝ))
32pm4.71rd 563 . . . 4 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
4 recn 10961 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
5 ovolshft.2 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
65recnd 11003 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
7 subneg 11270 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑦 − -𝐶) = (𝑦 + 𝐶))
84, 6, 7syl2anr 597 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 − -𝐶) = (𝑦 + 𝐶))
9 ovolshft.3 . . . . . . . 8 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
109adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
118, 10eleq12d 2833 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵 ↔ (𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴}))
12 id 22 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ)
13 readdcl 10954 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ)
1412, 5, 13syl2anr 597 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ)
15 oveq1 7282 . . . . . . . . 9 (𝑥 = (𝑦 + 𝐶) → (𝑥𝐶) = ((𝑦 + 𝐶) − 𝐶))
1615eleq1d 2823 . . . . . . . 8 (𝑥 = (𝑦 + 𝐶) → ((𝑥𝐶) ∈ 𝐴 ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴))
1716elrab3 3625 . . . . . . 7 ((𝑦 + 𝐶) ∈ ℝ → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴))
1814, 17syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴))
19 pncan 11227 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦)
204, 6, 19syl2anr 597 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦)
2120eleq1d 2823 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((𝑦 + 𝐶) − 𝐶) ∈ 𝐴𝑦𝐴))
2211, 18, 213bitrd 305 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵𝑦𝐴))
2322pm5.32da 579 . . . 4 (𝜑 → ((𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
243, 23bitr4d 281 . . 3 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)))
2524abbi2dv 2877 . 2 (𝜑𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)})
26 df-rab 3073 . 2 {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)}
2725, 26eqtr4di 2796 1 (𝜑𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  {crab 3068  wss 3887  (class class class)co 7275  cc 10869  cr 10870   + caddc 10874  cmin 11205  -cneg 11206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208
This theorem is referenced by:  ovolshft  24675  shftmbl  24702
  Copyright terms: Public domain W3C validator