Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > shft2rab | Structured version Visualization version GIF version |
Description: If 𝐵 is a shift of 𝐴 by 𝐶, then 𝐴 is a shift of 𝐵 by -𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) (Revised by Mario Carneiro, 6-Apr-2015.) |
Ref | Expression |
---|---|
ovolshft.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ovolshft.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ovolshft.3 | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
Ref | Expression |
---|---|
shft2rab | ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovolshft.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | 1 | sseld 3916 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
3 | 2 | pm4.71rd 562 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
4 | recn 10892 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
5 | ovolshft.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | 5 | recnd 10934 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
7 | subneg 11200 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑦 − -𝐶) = (𝑦 + 𝐶)) | |
8 | 4, 6, 7 | syl2anr 596 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 − -𝐶) = (𝑦 + 𝐶)) |
9 | ovolshft.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) | |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
11 | 8, 10 | eleq12d 2833 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵 ↔ (𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴})) |
12 | id 22 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℝ) | |
13 | readdcl 10885 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ) | |
14 | 12, 5, 13 | syl2anr 596 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ) |
15 | oveq1 7262 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦 + 𝐶) → (𝑥 − 𝐶) = ((𝑦 + 𝐶) − 𝐶)) | |
16 | 15 | eleq1d 2823 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 + 𝐶) → ((𝑥 − 𝐶) ∈ 𝐴 ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴)) |
17 | 16 | elrab3 3618 | . . . . . . 7 ⊢ ((𝑦 + 𝐶) ∈ ℝ → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴)) |
18 | 14, 17 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴)) |
19 | pncan 11157 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦) | |
20 | 4, 6, 19 | syl2anr 596 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦) |
21 | 20 | eleq1d 2823 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((𝑦 + 𝐶) − 𝐶) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
22 | 11, 18, 21 | 3bitrd 304 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵 ↔ 𝑦 ∈ 𝐴)) |
23 | 22 | pm5.32da 578 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
24 | 3, 23 | bitr4d 281 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵))) |
25 | 24 | abbi2dv 2876 | . 2 ⊢ (𝜑 → 𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)}) |
26 | df-rab 3072 | . 2 ⊢ {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)} | |
27 | 25, 26 | eqtr4di 2797 | 1 ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 {crab 3067 ⊆ wss 3883 (class class class)co 7255 ℂcc 10800 ℝcr 10801 + caddc 10805 − cmin 11135 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 |
This theorem is referenced by: ovolshft 24580 shftmbl 24607 |
Copyright terms: Public domain | W3C validator |