![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > shft2rab | Structured version Visualization version GIF version |
Description: If 𝐵 is a shift of 𝐴 by 𝐶, then 𝐴 is a shift of 𝐵 by -𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) (Revised by Mario Carneiro, 6-Apr-2015.) |
Ref | Expression |
---|---|
ovolshft.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ovolshft.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ovolshft.3 | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
Ref | Expression |
---|---|
shft2rab | ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovolshft.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | 1 | sseld 3994 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
3 | 2 | pm4.71rd 562 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
4 | recn 11243 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
5 | ovolshft.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | 5 | recnd 11287 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
7 | subneg 11556 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑦 − -𝐶) = (𝑦 + 𝐶)) | |
8 | 4, 6, 7 | syl2anr 597 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 − -𝐶) = (𝑦 + 𝐶)) |
9 | ovolshft.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) | |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
11 | 8, 10 | eleq12d 2833 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵 ↔ (𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴})) |
12 | id 22 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℝ) | |
13 | readdcl 11236 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ) | |
14 | 12, 5, 13 | syl2anr 597 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ) |
15 | oveq1 7438 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦 + 𝐶) → (𝑥 − 𝐶) = ((𝑦 + 𝐶) − 𝐶)) | |
16 | 15 | eleq1d 2824 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 + 𝐶) → ((𝑥 − 𝐶) ∈ 𝐴 ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴)) |
17 | 16 | elrab3 3696 | . . . . . . 7 ⊢ ((𝑦 + 𝐶) ∈ ℝ → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴)) |
18 | 14, 17 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴)) |
19 | pncan 11512 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦) | |
20 | 4, 6, 19 | syl2anr 597 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦) |
21 | 20 | eleq1d 2824 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((𝑦 + 𝐶) − 𝐶) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
22 | 11, 18, 21 | 3bitrd 305 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵 ↔ 𝑦 ∈ 𝐴)) |
23 | 22 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
24 | 3, 23 | bitr4d 282 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵))) |
25 | 24 | eqabdv 2873 | . 2 ⊢ (𝜑 → 𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)}) |
26 | df-rab 3434 | . 2 ⊢ {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)} | |
27 | 25, 26 | eqtr4di 2793 | 1 ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 {crab 3433 ⊆ wss 3963 (class class class)co 7431 ℂcc 11151 ℝcr 11152 + caddc 11156 − cmin 11490 -cneg 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-neg 11493 |
This theorem is referenced by: ovolshft 25560 shftmbl 25587 |
Copyright terms: Public domain | W3C validator |