MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shft2rab Structured version   Visualization version   GIF version

Theorem shft2rab 25437
Description: If 𝐵 is a shift of 𝐴 by 𝐶, then 𝐴 is a shift of 𝐵 by -𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) (Revised by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
ovolshft.1 (𝜑𝐴 ⊆ ℝ)
ovolshft.2 (𝜑𝐶 ∈ ℝ)
ovolshft.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
Assertion
Ref Expression
shft2rab (𝜑𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐵   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem shft2rab
StepHypRef Expression
1 ovolshft.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
21sseld 3929 . . . . 5 (𝜑 → (𝑦𝐴𝑦 ∈ ℝ))
32pm4.71rd 562 . . . 4 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
4 recn 11103 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
5 ovolshft.2 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
65recnd 11147 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
7 subneg 11417 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑦 − -𝐶) = (𝑦 + 𝐶))
84, 6, 7syl2anr 597 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 − -𝐶) = (𝑦 + 𝐶))
9 ovolshft.3 . . . . . . . 8 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
109adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
118, 10eleq12d 2827 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵 ↔ (𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴}))
12 id 22 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ)
13 readdcl 11096 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ)
1412, 5, 13syl2anr 597 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ)
15 oveq1 7359 . . . . . . . . 9 (𝑥 = (𝑦 + 𝐶) → (𝑥𝐶) = ((𝑦 + 𝐶) − 𝐶))
1615eleq1d 2818 . . . . . . . 8 (𝑥 = (𝑦 + 𝐶) → ((𝑥𝐶) ∈ 𝐴 ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴))
1716elrab3 3644 . . . . . . 7 ((𝑦 + 𝐶) ∈ ℝ → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴))
1814, 17syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴))
19 pncan 11373 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦)
204, 6, 19syl2anr 597 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦)
2120eleq1d 2818 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((𝑦 + 𝐶) − 𝐶) ∈ 𝐴𝑦𝐴))
2211, 18, 213bitrd 305 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵𝑦𝐴))
2322pm5.32da 579 . . . 4 (𝜑 → ((𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
243, 23bitr4d 282 . . 3 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)))
2524eqabdv 2866 . 2 (𝜑𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)})
26 df-rab 3397 . 2 {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)}
2725, 26eqtr4di 2786 1 (𝜑𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  {crab 3396  wss 3898  (class class class)co 7352  cc 11011  cr 11012   + caddc 11016  cmin 11351  -cneg 11352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-sub 11353  df-neg 11354
This theorem is referenced by:  ovolshft  25440  shftmbl  25467
  Copyright terms: Public domain W3C validator