| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > shft2rab | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is a shift of 𝐴 by 𝐶, then 𝐴 is a shift of 𝐵 by -𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) (Revised by Mario Carneiro, 6-Apr-2015.) |
| Ref | Expression |
|---|---|
| ovolshft.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| ovolshft.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ovolshft.3 | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
| Ref | Expression |
|---|---|
| shft2rab | ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolshft.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | 1 | sseld 3933 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
| 3 | 2 | pm4.71rd 562 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
| 4 | recn 11093 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
| 5 | ovolshft.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | 5 | recnd 11137 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 7 | subneg 11407 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑦 − -𝐶) = (𝑦 + 𝐶)) | |
| 8 | 4, 6, 7 | syl2anr 597 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 − -𝐶) = (𝑦 + 𝐶)) |
| 9 | ovolshft.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) | |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
| 11 | 8, 10 | eleq12d 2825 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵 ↔ (𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴})) |
| 12 | id 22 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℝ) | |
| 13 | readdcl 11086 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ) | |
| 14 | 12, 5, 13 | syl2anr 597 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ) |
| 15 | oveq1 7353 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦 + 𝐶) → (𝑥 − 𝐶) = ((𝑦 + 𝐶) − 𝐶)) | |
| 16 | 15 | eleq1d 2816 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 + 𝐶) → ((𝑥 − 𝐶) ∈ 𝐴 ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴)) |
| 17 | 16 | elrab3 3648 | . . . . . . 7 ⊢ ((𝑦 + 𝐶) ∈ ℝ → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴)) |
| 18 | 14, 17 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴)) |
| 19 | pncan 11363 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦) | |
| 20 | 4, 6, 19 | syl2anr 597 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦) |
| 21 | 20 | eleq1d 2816 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((𝑦 + 𝐶) − 𝐶) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 22 | 11, 18, 21 | 3bitrd 305 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵 ↔ 𝑦 ∈ 𝐴)) |
| 23 | 22 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
| 24 | 3, 23 | bitr4d 282 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵))) |
| 25 | 24 | eqabdv 2864 | . 2 ⊢ (𝜑 → 𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)}) |
| 26 | df-rab 3396 | . 2 ⊢ {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)} | |
| 27 | 25, 26 | eqtr4di 2784 | 1 ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 ⊆ wss 3902 (class class class)co 7346 ℂcc 11001 ℝcr 11002 + caddc 11006 − cmin 11341 -cneg 11342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-sub 11343 df-neg 11344 |
| This theorem is referenced by: ovolshft 25437 shftmbl 25464 |
| Copyright terms: Public domain | W3C validator |