MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shft2rab Structured version   Visualization version   GIF version

Theorem shft2rab 24209
Description: If 𝐵 is a shift of 𝐴 by 𝐶, then 𝐴 is a shift of 𝐵 by -𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) (Revised by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
ovolshft.1 (𝜑𝐴 ⊆ ℝ)
ovolshft.2 (𝜑𝐶 ∈ ℝ)
ovolshft.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
Assertion
Ref Expression
shft2rab (𝜑𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐵   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem shft2rab
StepHypRef Expression
1 ovolshft.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
21sseld 3892 . . . . 5 (𝜑 → (𝑦𝐴𝑦 ∈ ℝ))
32pm4.71rd 567 . . . 4 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
4 recn 10666 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
5 ovolshft.2 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
65recnd 10708 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
7 subneg 10974 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑦 − -𝐶) = (𝑦 + 𝐶))
84, 6, 7syl2anr 600 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 − -𝐶) = (𝑦 + 𝐶))
9 ovolshft.3 . . . . . . . 8 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
109adantr 485 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
118, 10eleq12d 2847 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵 ↔ (𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴}))
12 id 22 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ)
13 readdcl 10659 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ)
1412, 5, 13syl2anr 600 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ)
15 oveq1 7158 . . . . . . . . 9 (𝑥 = (𝑦 + 𝐶) → (𝑥𝐶) = ((𝑦 + 𝐶) − 𝐶))
1615eleq1d 2837 . . . . . . . 8 (𝑥 = (𝑦 + 𝐶) → ((𝑥𝐶) ∈ 𝐴 ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴))
1716elrab3 3604 . . . . . . 7 ((𝑦 + 𝐶) ∈ ℝ → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴))
1814, 17syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴))
19 pncan 10931 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦)
204, 6, 19syl2anr 600 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦)
2120eleq1d 2837 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (((𝑦 + 𝐶) − 𝐶) ∈ 𝐴𝑦𝐴))
2211, 18, 213bitrd 309 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵𝑦𝐴))
2322pm5.32da 583 . . . 4 (𝜑 → ((𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦𝐴)))
243, 23bitr4d 285 . . 3 (𝜑 → (𝑦𝐴 ↔ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)))
2524abbi2dv 2890 . 2 (𝜑𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)})
26 df-rab 3080 . 2 {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)}
2725, 26eqtr4di 2812 1 (𝜑𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  {cab 2736  {crab 3075  wss 3859  (class class class)co 7151  cc 10574  cr 10575   + caddc 10579  cmin 10909  -cneg 10910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-po 5444  df-so 5445  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10716  df-mnf 10717  df-ltxr 10719  df-sub 10911  df-neg 10912
This theorem is referenced by:  ovolshft  24212  shftmbl  24239
  Copyright terms: Public domain W3C validator