![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > shft2rab | Structured version Visualization version GIF version |
Description: If 𝐵 is a shift of 𝐴 by 𝐶, then 𝐴 is a shift of 𝐵 by -𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) (Revised by Mario Carneiro, 6-Apr-2015.) |
Ref | Expression |
---|---|
ovolshft.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ovolshft.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ovolshft.3 | ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
Ref | Expression |
---|---|
shft2rab | ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovolshft.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | 1 | sseld 3981 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
3 | 2 | pm4.71rd 563 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
4 | recn 11202 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
5 | ovolshft.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | 5 | recnd 11246 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
7 | subneg 11513 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑦 − -𝐶) = (𝑦 + 𝐶)) | |
8 | 4, 6, 7 | syl2anr 597 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 − -𝐶) = (𝑦 + 𝐶)) |
9 | ovolshft.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) | |
10 | 9 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) |
11 | 8, 10 | eleq12d 2827 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵 ↔ (𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴})) |
12 | id 22 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℝ) | |
13 | readdcl 11195 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ) | |
14 | 12, 5, 13 | syl2anr 597 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝐶) ∈ ℝ) |
15 | oveq1 7418 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦 + 𝐶) → (𝑥 − 𝐶) = ((𝑦 + 𝐶) − 𝐶)) | |
16 | 15 | eleq1d 2818 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 + 𝐶) → ((𝑥 − 𝐶) ∈ 𝐴 ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴)) |
17 | 16 | elrab3 3684 | . . . . . . 7 ⊢ ((𝑦 + 𝐶) ∈ ℝ → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴)) |
18 | 14, 17 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + 𝐶) ∈ {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴} ↔ ((𝑦 + 𝐶) − 𝐶) ∈ 𝐴)) |
19 | pncan 11470 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦) | |
20 | 4, 6, 19 | syl2anr 597 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + 𝐶) − 𝐶) = 𝑦) |
21 | 20 | eleq1d 2818 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((𝑦 + 𝐶) − 𝐶) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
22 | 11, 18, 21 | 3bitrd 304 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − -𝐶) ∈ 𝐵 ↔ 𝑦 ∈ 𝐴)) |
23 | 22 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴))) |
24 | 3, 23 | bitr4d 281 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵))) |
25 | 24 | eqabdv 2867 | . 2 ⊢ (𝜑 → 𝐴 = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)}) |
26 | df-rab 3433 | . 2 ⊢ {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵} = {𝑦 ∣ (𝑦 ∈ ℝ ∧ (𝑦 − -𝐶) ∈ 𝐵)} | |
27 | 25, 26 | eqtr4di 2790 | 1 ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2709 {crab 3432 ⊆ wss 3948 (class class class)co 7411 ℂcc 11110 ℝcr 11111 + caddc 11115 − cmin 11448 -cneg 11449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 df-neg 11451 |
This theorem is referenced by: ovolshft 25252 shftmbl 25279 |
Copyright terms: Public domain | W3C validator |