Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addscllem1 Structured version   Visualization version   GIF version

Theorem addscllem1 34131
Description: Lemma for addscl (future) Alternate expression for surreal addition. (Contributed by Scott Fenton, 23-Aug-2024.)
Assertion
Ref Expression
addscllem1 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵))))))

Proof of Theorem addscllem1
Dummy variables 𝑙 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsval 34126 . 2 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)}) |s ({𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)})))
2 addsfn 34125 . . . . . . 7 +s Fn ( No × No )
3 leftssno 34063 . . . . . . . . 9 ( L ‘𝐴) ⊆ No
43a1i 11 . . . . . . . 8 (𝐴 No → ( L ‘𝐴) ⊆ No )
5 snssi 4741 . . . . . . . 8 (𝐵 No → {𝐵} ⊆ No )
6 xpss12 5604 . . . . . . . 8 ((( L ‘𝐴) ⊆ No ∧ {𝐵} ⊆ No ) → (( L ‘𝐴) × {𝐵}) ⊆ ( No × No ))
74, 5, 6syl2an 596 . . . . . . 7 ((𝐴 No 𝐵 No ) → (( L ‘𝐴) × {𝐵}) ⊆ ( No × No ))
8 ovelimab 7450 . . . . . . 7 (( +s Fn ( No × No ) ∧ (( L ‘𝐴) × {𝐵}) ⊆ ( No × No )) → (𝑥 ∈ ( +s “ (( L ‘𝐴) × {𝐵})) ↔ ∃𝑙 ∈ ( L ‘𝐴)∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟)))
92, 7, 8sylancr 587 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝑥 ∈ ( +s “ (( L ‘𝐴) × {𝐵})) ↔ ∃𝑙 ∈ ( L ‘𝐴)∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟)))
10 oveq2 7283 . . . . . . . . . 10 (𝑟 = 𝐵 → (𝑙 +s 𝑟) = (𝑙 +s 𝐵))
1110eqeq2d 2749 . . . . . . . . 9 (𝑟 = 𝐵 → (𝑥 = (𝑙 +s 𝑟) ↔ 𝑥 = (𝑙 +s 𝐵)))
1211rexsng 4610 . . . . . . . 8 (𝐵 No → (∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟) ↔ 𝑥 = (𝑙 +s 𝐵)))
1312adantl 482 . . . . . . 7 ((𝐴 No 𝐵 No ) → (∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟) ↔ 𝑥 = (𝑙 +s 𝐵)))
1413rexbidv 3226 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑙 ∈ ( L ‘𝐴)∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)))
159, 14bitrd 278 . . . . 5 ((𝐴 No 𝐵 No ) → (𝑥 ∈ ( +s “ (( L ‘𝐴) × {𝐵})) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)))
1615abbi2dv 2877 . . . 4 ((𝐴 No 𝐵 No ) → ( +s “ (( L ‘𝐴) × {𝐵})) = {𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)})
17 snssi 4741 . . . . . . . 8 (𝐴 No → {𝐴} ⊆ No )
18 leftssno 34063 . . . . . . . . 9 ( L ‘𝐵) ⊆ No
1918a1i 11 . . . . . . . 8 (𝐵 No → ( L ‘𝐵) ⊆ No )
20 xpss12 5604 . . . . . . . 8 (({𝐴} ⊆ No ∧ ( L ‘𝐵) ⊆ No ) → ({𝐴} × ( L ‘𝐵)) ⊆ ( No × No ))
2117, 19, 20syl2an 596 . . . . . . 7 ((𝐴 No 𝐵 No ) → ({𝐴} × ( L ‘𝐵)) ⊆ ( No × No ))
22 ovelimab 7450 . . . . . . 7 (( +s Fn ( No × No ) ∧ ({𝐴} × ( L ‘𝐵)) ⊆ ( No × No )) → (𝑦 ∈ ( +s “ ({𝐴} × ( L ‘𝐵))) ↔ ∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙)))
232, 21, 22sylancr 587 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( L ‘𝐵))) ↔ ∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙)))
24 oveq1 7282 . . . . . . . . . 10 (𝑟 = 𝐴 → (𝑟 +s 𝑙) = (𝐴 +s 𝑙))
2524eqeq2d 2749 . . . . . . . . 9 (𝑟 = 𝐴 → (𝑦 = (𝑟 +s 𝑙) ↔ 𝑦 = (𝐴 +s 𝑙)))
2625rexbidv 3226 . . . . . . . 8 (𝑟 = 𝐴 → (∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)))
2726rexsng 4610 . . . . . . 7 (𝐴 No → (∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)))
2827adantr 481 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)))
2923, 28bitrd 278 . . . . 5 ((𝐴 No 𝐵 No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( L ‘𝐵))) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)))
3029abbi2dv 2877 . . . 4 ((𝐴 No 𝐵 No ) → ( +s “ ({𝐴} × ( L ‘𝐵))) = {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)})
3116, 30uneq12d 4098 . . 3 ((𝐴 No 𝐵 No ) → (( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) = ({𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)}))
32 rightssno 34064 . . . . . . . . 9 ( R ‘𝐴) ⊆ No
3332a1i 11 . . . . . . . 8 (𝐴 No → ( R ‘𝐴) ⊆ No )
34 xpss12 5604 . . . . . . . 8 ((( R ‘𝐴) ⊆ No ∧ {𝐵} ⊆ No ) → (( R ‘𝐴) × {𝐵}) ⊆ ( No × No ))
3533, 5, 34syl2an 596 . . . . . . 7 ((𝐴 No 𝐵 No ) → (( R ‘𝐴) × {𝐵}) ⊆ ( No × No ))
36 ovelimab 7450 . . . . . . 7 (( +s Fn ( No × No ) ∧ (( R ‘𝐴) × {𝐵}) ⊆ ( No × No )) → (𝑥 ∈ ( +s “ (( R ‘𝐴) × {𝐵})) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙)))
372, 35, 36sylancr 587 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝑥 ∈ ( +s “ (( R ‘𝐴) × {𝐵})) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙)))
38 oveq2 7283 . . . . . . . . . 10 (𝑙 = 𝐵 → (𝑟 +s 𝑙) = (𝑟 +s 𝐵))
3938eqeq2d 2749 . . . . . . . . 9 (𝑙 = 𝐵 → (𝑥 = (𝑟 +s 𝑙) ↔ 𝑥 = (𝑟 +s 𝐵)))
4039rexsng 4610 . . . . . . . 8 (𝐵 No → (∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙) ↔ 𝑥 = (𝑟 +s 𝐵)))
4140adantl 482 . . . . . . 7 ((𝐴 No 𝐵 No ) → (∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙) ↔ 𝑥 = (𝑟 +s 𝐵)))
4241rexbidv 3226 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑟 ∈ ( R ‘𝐴)∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)))
4337, 42bitrd 278 . . . . 5 ((𝐴 No 𝐵 No ) → (𝑥 ∈ ( +s “ (( R ‘𝐴) × {𝐵})) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)))
4443abbi2dv 2877 . . . 4 ((𝐴 No 𝐵 No ) → ( +s “ (( R ‘𝐴) × {𝐵})) = {𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)})
45 rightssno 34064 . . . . . . . . 9 ( R ‘𝐵) ⊆ No
4645a1i 11 . . . . . . . 8 (𝐵 No → ( R ‘𝐵) ⊆ No )
47 xpss12 5604 . . . . . . . 8 (({𝐴} ⊆ No ∧ ( R ‘𝐵) ⊆ No ) → ({𝐴} × ( R ‘𝐵)) ⊆ ( No × No ))
4817, 46, 47syl2an 596 . . . . . . 7 ((𝐴 No 𝐵 No ) → ({𝐴} × ( R ‘𝐵)) ⊆ ( No × No ))
49 ovelimab 7450 . . . . . . 7 (( +s Fn ( No × No ) ∧ ({𝐴} × ( R ‘𝐵)) ⊆ ( No × No )) → (𝑦 ∈ ( +s “ ({𝐴} × ( R ‘𝐵))) ↔ ∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟)))
502, 48, 49sylancr 587 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( R ‘𝐵))) ↔ ∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟)))
51 oveq1 7282 . . . . . . . . . 10 (𝑙 = 𝐴 → (𝑙 +s 𝑟) = (𝐴 +s 𝑟))
5251eqeq2d 2749 . . . . . . . . 9 (𝑙 = 𝐴 → (𝑦 = (𝑙 +s 𝑟) ↔ 𝑦 = (𝐴 +s 𝑟)))
5352rexbidv 3226 . . . . . . . 8 (𝑙 = 𝐴 → (∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)))
5453rexsng 4610 . . . . . . 7 (𝐴 No → (∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)))
5554adantr 481 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)))
5650, 55bitrd 278 . . . . 5 ((𝐴 No 𝐵 No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( R ‘𝐵))) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)))
5756abbi2dv 2877 . . . 4 ((𝐴 No 𝐵 No ) → ( +s “ ({𝐴} × ( R ‘𝐵))) = {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)})
5844, 57uneq12d 4098 . . 3 ((𝐴 No 𝐵 No ) → (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵)))) = ({𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)}))
5931, 58oveq12d 7293 . 2 ((𝐴 No 𝐵 No ) → ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵))))) = (({𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)}) |s ({𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)})))
601, 59eqtr4d 2781 1 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  cun 3885  wss 3887  {csn 4561   × cxp 5587  cima 5592   Fn wfn 6428  cfv 6433  (class class class)co 7275   No csur 33843   |s cscut 33977   L cleft 34029   R cright 34030   +s cadds 34116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848  df-sslt 33976  df-scut 33978  df-made 34031  df-old 34032  df-left 34034  df-right 34035  df-norec2 34106  df-adds 34119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator