Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addscllem1 Structured version   Visualization version   GIF version

Theorem addscllem1 33774
Description: Lemma for addscl (future) Alternate expression for surreal addition. (Contributed by Scott Fenton, 23-Aug-2024.)
Assertion
Ref Expression
addscllem1 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵))))))

Proof of Theorem addscllem1
Dummy variables 𝑙 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsval 33769 . 2 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)}) |s ({𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)})))
2 addsfn 33768 . . . . . . 7 +s Fn ( No × No )
3 leftssno 33706 . . . . . . . . 9 ( L ‘𝐴) ⊆ No
43a1i 11 . . . . . . . 8 (𝐴 No → ( L ‘𝐴) ⊆ No )
5 snssi 4696 . . . . . . . 8 (𝐵 No → {𝐵} ⊆ No )
6 xpss12 5540 . . . . . . . 8 ((( L ‘𝐴) ⊆ No ∧ {𝐵} ⊆ No ) → (( L ‘𝐴) × {𝐵}) ⊆ ( No × No ))
74, 5, 6syl2an 599 . . . . . . 7 ((𝐴 No 𝐵 No ) → (( L ‘𝐴) × {𝐵}) ⊆ ( No × No ))
8 ovelimab 7342 . . . . . . 7 (( +s Fn ( No × No ) ∧ (( L ‘𝐴) × {𝐵}) ⊆ ( No × No )) → (𝑥 ∈ ( +s “ (( L ‘𝐴) × {𝐵})) ↔ ∃𝑙 ∈ ( L ‘𝐴)∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟)))
92, 7, 8sylancr 590 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝑥 ∈ ( +s “ (( L ‘𝐴) × {𝐵})) ↔ ∃𝑙 ∈ ( L ‘𝐴)∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟)))
10 oveq2 7178 . . . . . . . . . 10 (𝑟 = 𝐵 → (𝑙 +s 𝑟) = (𝑙 +s 𝐵))
1110eqeq2d 2749 . . . . . . . . 9 (𝑟 = 𝐵 → (𝑥 = (𝑙 +s 𝑟) ↔ 𝑥 = (𝑙 +s 𝐵)))
1211rexsng 4565 . . . . . . . 8 (𝐵 No → (∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟) ↔ 𝑥 = (𝑙 +s 𝐵)))
1312adantl 485 . . . . . . 7 ((𝐴 No 𝐵 No ) → (∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟) ↔ 𝑥 = (𝑙 +s 𝐵)))
1413rexbidv 3207 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑙 ∈ ( L ‘𝐴)∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)))
159, 14bitrd 282 . . . . 5 ((𝐴 No 𝐵 No ) → (𝑥 ∈ ( +s “ (( L ‘𝐴) × {𝐵})) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)))
1615abbi2dv 2869 . . . 4 ((𝐴 No 𝐵 No ) → ( +s “ (( L ‘𝐴) × {𝐵})) = {𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)})
17 snssi 4696 . . . . . . . 8 (𝐴 No → {𝐴} ⊆ No )
18 leftssno 33706 . . . . . . . . 9 ( L ‘𝐵) ⊆ No
1918a1i 11 . . . . . . . 8 (𝐵 No → ( L ‘𝐵) ⊆ No )
20 xpss12 5540 . . . . . . . 8 (({𝐴} ⊆ No ∧ ( L ‘𝐵) ⊆ No ) → ({𝐴} × ( L ‘𝐵)) ⊆ ( No × No ))
2117, 19, 20syl2an 599 . . . . . . 7 ((𝐴 No 𝐵 No ) → ({𝐴} × ( L ‘𝐵)) ⊆ ( No × No ))
22 ovelimab 7342 . . . . . . 7 (( +s Fn ( No × No ) ∧ ({𝐴} × ( L ‘𝐵)) ⊆ ( No × No )) → (𝑦 ∈ ( +s “ ({𝐴} × ( L ‘𝐵))) ↔ ∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙)))
232, 21, 22sylancr 590 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( L ‘𝐵))) ↔ ∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙)))
24 oveq1 7177 . . . . . . . . . 10 (𝑟 = 𝐴 → (𝑟 +s 𝑙) = (𝐴 +s 𝑙))
2524eqeq2d 2749 . . . . . . . . 9 (𝑟 = 𝐴 → (𝑦 = (𝑟 +s 𝑙) ↔ 𝑦 = (𝐴 +s 𝑙)))
2625rexbidv 3207 . . . . . . . 8 (𝑟 = 𝐴 → (∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)))
2726rexsng 4565 . . . . . . 7 (𝐴 No → (∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)))
2827adantr 484 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)))
2923, 28bitrd 282 . . . . 5 ((𝐴 No 𝐵 No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( L ‘𝐵))) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)))
3029abbi2dv 2869 . . . 4 ((𝐴 No 𝐵 No ) → ( +s “ ({𝐴} × ( L ‘𝐵))) = {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)})
3116, 30uneq12d 4054 . . 3 ((𝐴 No 𝐵 No ) → (( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) = ({𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)}))
32 rightssno 33707 . . . . . . . . 9 ( R ‘𝐴) ⊆ No
3332a1i 11 . . . . . . . 8 (𝐴 No → ( R ‘𝐴) ⊆ No )
34 xpss12 5540 . . . . . . . 8 ((( R ‘𝐴) ⊆ No ∧ {𝐵} ⊆ No ) → (( R ‘𝐴) × {𝐵}) ⊆ ( No × No ))
3533, 5, 34syl2an 599 . . . . . . 7 ((𝐴 No 𝐵 No ) → (( R ‘𝐴) × {𝐵}) ⊆ ( No × No ))
36 ovelimab 7342 . . . . . . 7 (( +s Fn ( No × No ) ∧ (( R ‘𝐴) × {𝐵}) ⊆ ( No × No )) → (𝑥 ∈ ( +s “ (( R ‘𝐴) × {𝐵})) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙)))
372, 35, 36sylancr 590 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝑥 ∈ ( +s “ (( R ‘𝐴) × {𝐵})) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙)))
38 oveq2 7178 . . . . . . . . . 10 (𝑙 = 𝐵 → (𝑟 +s 𝑙) = (𝑟 +s 𝐵))
3938eqeq2d 2749 . . . . . . . . 9 (𝑙 = 𝐵 → (𝑥 = (𝑟 +s 𝑙) ↔ 𝑥 = (𝑟 +s 𝐵)))
4039rexsng 4565 . . . . . . . 8 (𝐵 No → (∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙) ↔ 𝑥 = (𝑟 +s 𝐵)))
4140adantl 485 . . . . . . 7 ((𝐴 No 𝐵 No ) → (∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙) ↔ 𝑥 = (𝑟 +s 𝐵)))
4241rexbidv 3207 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑟 ∈ ( R ‘𝐴)∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)))
4337, 42bitrd 282 . . . . 5 ((𝐴 No 𝐵 No ) → (𝑥 ∈ ( +s “ (( R ‘𝐴) × {𝐵})) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)))
4443abbi2dv 2869 . . . 4 ((𝐴 No 𝐵 No ) → ( +s “ (( R ‘𝐴) × {𝐵})) = {𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)})
45 rightssno 33707 . . . . . . . . 9 ( R ‘𝐵) ⊆ No
4645a1i 11 . . . . . . . 8 (𝐵 No → ( R ‘𝐵) ⊆ No )
47 xpss12 5540 . . . . . . . 8 (({𝐴} ⊆ No ∧ ( R ‘𝐵) ⊆ No ) → ({𝐴} × ( R ‘𝐵)) ⊆ ( No × No ))
4817, 46, 47syl2an 599 . . . . . . 7 ((𝐴 No 𝐵 No ) → ({𝐴} × ( R ‘𝐵)) ⊆ ( No × No ))
49 ovelimab 7342 . . . . . . 7 (( +s Fn ( No × No ) ∧ ({𝐴} × ( R ‘𝐵)) ⊆ ( No × No )) → (𝑦 ∈ ( +s “ ({𝐴} × ( R ‘𝐵))) ↔ ∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟)))
502, 48, 49sylancr 590 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( R ‘𝐵))) ↔ ∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟)))
51 oveq1 7177 . . . . . . . . . 10 (𝑙 = 𝐴 → (𝑙 +s 𝑟) = (𝐴 +s 𝑟))
5251eqeq2d 2749 . . . . . . . . 9 (𝑙 = 𝐴 → (𝑦 = (𝑙 +s 𝑟) ↔ 𝑦 = (𝐴 +s 𝑟)))
5352rexbidv 3207 . . . . . . . 8 (𝑙 = 𝐴 → (∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)))
5453rexsng 4565 . . . . . . 7 (𝐴 No → (∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)))
5554adantr 484 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)))
5650, 55bitrd 282 . . . . 5 ((𝐴 No 𝐵 No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( R ‘𝐵))) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)))
5756abbi2dv 2869 . . . 4 ((𝐴 No 𝐵 No ) → ( +s “ ({𝐴} × ( R ‘𝐵))) = {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)})
5844, 57uneq12d 4054 . . 3 ((𝐴 No 𝐵 No ) → (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵)))) = ({𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)}))
5931, 58oveq12d 7188 . 2 ((𝐴 No 𝐵 No ) → ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵))))) = (({𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)}) |s ({𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)})))
601, 59eqtr4d 2776 1 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  {cab 2716  wrex 3054  cun 3841  wss 3843  {csn 4516   × cxp 5523  cima 5528   Fn wfn 6334  cfv 6339  (class class class)co 7170   No csur 33486   |s cscut 33620   L cleft 33672   R cright 33673   +s cadds 33759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-1o 8131  df-2o 8132  df-frecs 33438  df-no 33489  df-slt 33490  df-bday 33491  df-sslt 33619  df-scut 33621  df-made 33674  df-old 33675  df-left 33677  df-right 33678  df-norec2 33749  df-adds 33762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator