Step | Hyp | Ref
| Expression |
1 | | addsval 34053 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)}) |s ({𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)}))) |
2 | | addsfn 34052 |
. . . . . . 7
⊢ +s Fn
( No × No
) |
3 | | leftssno 33990 |
. . . . . . . . 9
⊢ ( L
‘𝐴) ⊆ No |
4 | 3 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ∈
No → ( L ‘𝐴) ⊆ No
) |
5 | | snssi 4738 |
. . . . . . . 8
⊢ (𝐵 ∈
No → {𝐵}
⊆ No ) |
6 | | xpss12 5595 |
. . . . . . . 8
⊢ ((( L
‘𝐴) ⊆ No ∧ {𝐵} ⊆ No )
→ (( L ‘𝐴)
× {𝐵}) ⊆ ( No × No
)) |
7 | 4, 5, 6 | syl2an 595 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (( L ‘𝐴) × {𝐵}) ⊆ ( No
× No )) |
8 | | ovelimab 7428 |
. . . . . . 7
⊢ (( +s Fn
( No × No )
∧ (( L ‘𝐴)
× {𝐵}) ⊆ ( No × No )) →
(𝑥 ∈ ( +s “ (( L
‘𝐴) × {𝐵})) ↔ ∃𝑙 ∈ ( L ‘𝐴)∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟))) |
9 | 2, 7, 8 | sylancr 586 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑥 ∈ ( +s “ (( L ‘𝐴) × {𝐵})) ↔ ∃𝑙 ∈ ( L ‘𝐴)∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟))) |
10 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑟 = 𝐵 → (𝑙 +s 𝑟) = (𝑙 +s 𝐵)) |
11 | 10 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑟 = 𝐵 → (𝑥 = (𝑙 +s 𝑟) ↔ 𝑥 = (𝑙 +s 𝐵))) |
12 | 11 | rexsng 4607 |
. . . . . . . 8
⊢ (𝐵 ∈
No → (∃𝑟
∈ {𝐵}𝑥 = (𝑙 +s 𝑟) ↔ 𝑥 = (𝑙 +s 𝐵))) |
13 | 12 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟) ↔ 𝑥 = (𝑙 +s 𝐵))) |
14 | 13 | rexbidv 3225 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (∃𝑙 ∈ ( L ‘𝐴)∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵))) |
15 | 9, 14 | bitrd 278 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑥 ∈ ( +s “ (( L ‘𝐴) × {𝐵})) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵))) |
16 | 15 | abbi2dv 2876 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ( +s “ (( L ‘𝐴) × {𝐵})) = {𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)}) |
17 | | snssi 4738 |
. . . . . . . 8
⊢ (𝐴 ∈
No → {𝐴}
⊆ No ) |
18 | | leftssno 33990 |
. . . . . . . . 9
⊢ ( L
‘𝐵) ⊆ No |
19 | 18 | a1i 11 |
. . . . . . . 8
⊢ (𝐵 ∈
No → ( L ‘𝐵) ⊆ No
) |
20 | | xpss12 5595 |
. . . . . . . 8
⊢ (({𝐴} ⊆
No ∧ ( L ‘𝐵) ⊆ No )
→ ({𝐴} × ( L
‘𝐵)) ⊆ ( No × No
)) |
21 | 17, 19, 20 | syl2an 595 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ({𝐴} × ( L ‘𝐵)) ⊆ ( No
× No )) |
22 | | ovelimab 7428 |
. . . . . . 7
⊢ (( +s Fn
( No × No )
∧ ({𝐴} × ( L
‘𝐵)) ⊆ ( No × No )) →
(𝑦 ∈ ( +s “
({𝐴} × ( L
‘𝐵))) ↔
∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙))) |
23 | 2, 21, 22 | sylancr 586 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( L ‘𝐵))) ↔ ∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙))) |
24 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑟 = 𝐴 → (𝑟 +s 𝑙) = (𝐴 +s 𝑙)) |
25 | 24 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑟 = 𝐴 → (𝑦 = (𝑟 +s 𝑙) ↔ 𝑦 = (𝐴 +s 𝑙))) |
26 | 25 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑟 = 𝐴 → (∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙))) |
27 | 26 | rexsng 4607 |
. . . . . . 7
⊢ (𝐴 ∈
No → (∃𝑟
∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙))) |
28 | 27 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙))) |
29 | 23, 28 | bitrd 278 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( L ‘𝐵))) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙))) |
30 | 29 | abbi2dv 2876 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ( +s “ ({𝐴} × ( L ‘𝐵))) = {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)}) |
31 | 16, 30 | uneq12d 4094 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) = ({𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)})) |
32 | | rightssno 33991 |
. . . . . . . . 9
⊢ ( R
‘𝐴) ⊆ No |
33 | 32 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ∈
No → ( R ‘𝐴) ⊆ No
) |
34 | | xpss12 5595 |
. . . . . . . 8
⊢ ((( R
‘𝐴) ⊆ No ∧ {𝐵} ⊆ No )
→ (( R ‘𝐴)
× {𝐵}) ⊆ ( No × No
)) |
35 | 33, 5, 34 | syl2an 595 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (( R ‘𝐴) × {𝐵}) ⊆ ( No
× No )) |
36 | | ovelimab 7428 |
. . . . . . 7
⊢ (( +s Fn
( No × No )
∧ (( R ‘𝐴)
× {𝐵}) ⊆ ( No × No )) →
(𝑥 ∈ ( +s “ (( R
‘𝐴) × {𝐵})) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙))) |
37 | 2, 35, 36 | sylancr 586 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑥 ∈ ( +s “ (( R ‘𝐴) × {𝐵})) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙))) |
38 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑙 = 𝐵 → (𝑟 +s 𝑙) = (𝑟 +s 𝐵)) |
39 | 38 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑙 = 𝐵 → (𝑥 = (𝑟 +s 𝑙) ↔ 𝑥 = (𝑟 +s 𝐵))) |
40 | 39 | rexsng 4607 |
. . . . . . . 8
⊢ (𝐵 ∈
No → (∃𝑙
∈ {𝐵}𝑥 = (𝑟 +s 𝑙) ↔ 𝑥 = (𝑟 +s 𝐵))) |
41 | 40 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙) ↔ 𝑥 = (𝑟 +s 𝐵))) |
42 | 41 | rexbidv 3225 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (∃𝑟 ∈ ( R ‘𝐴)∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵))) |
43 | 37, 42 | bitrd 278 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑥 ∈ ( +s “ (( R ‘𝐴) × {𝐵})) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵))) |
44 | 43 | abbi2dv 2876 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ( +s “ (( R ‘𝐴) × {𝐵})) = {𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)}) |
45 | | rightssno 33991 |
. . . . . . . . 9
⊢ ( R
‘𝐵) ⊆ No |
46 | 45 | a1i 11 |
. . . . . . . 8
⊢ (𝐵 ∈
No → ( R ‘𝐵) ⊆ No
) |
47 | | xpss12 5595 |
. . . . . . . 8
⊢ (({𝐴} ⊆
No ∧ ( R ‘𝐵) ⊆ No )
→ ({𝐴} × ( R
‘𝐵)) ⊆ ( No × No
)) |
48 | 17, 46, 47 | syl2an 595 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ({𝐴} × ( R ‘𝐵)) ⊆ ( No
× No )) |
49 | | ovelimab 7428 |
. . . . . . 7
⊢ (( +s Fn
( No × No )
∧ ({𝐴} × ( R
‘𝐵)) ⊆ ( No × No )) →
(𝑦 ∈ ( +s “
({𝐴} × ( R
‘𝐵))) ↔
∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟))) |
50 | 2, 48, 49 | sylancr 586 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( R ‘𝐵))) ↔ ∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟))) |
51 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑙 = 𝐴 → (𝑙 +s 𝑟) = (𝐴 +s 𝑟)) |
52 | 51 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑙 = 𝐴 → (𝑦 = (𝑙 +s 𝑟) ↔ 𝑦 = (𝐴 +s 𝑟))) |
53 | 52 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑙 = 𝐴 → (∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟))) |
54 | 53 | rexsng 4607 |
. . . . . . 7
⊢ (𝐴 ∈
No → (∃𝑙
∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟))) |
55 | 54 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟))) |
56 | 50, 55 | bitrd 278 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( R ‘𝐵))) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟))) |
57 | 56 | abbi2dv 2876 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ( +s “ ({𝐴} × ( R ‘𝐵))) = {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)}) |
58 | 44, 57 | uneq12d 4094 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵)))) = ({𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)})) |
59 | 31, 58 | oveq12d 7273 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵))))) = (({𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)}) |s ({𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)}))) |
60 | 1, 59 | eqtr4d 2781 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 +s 𝐵) = ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵)))))) |