Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addscllem1 Structured version   Visualization version   GIF version

Theorem addscllem1 34058
Description: Lemma for addscl (future) Alternate expression for surreal addition. (Contributed by Scott Fenton, 23-Aug-2024.)
Assertion
Ref Expression
addscllem1 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵))))))

Proof of Theorem addscllem1
Dummy variables 𝑙 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsval 34053 . 2 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)}) |s ({𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)})))
2 addsfn 34052 . . . . . . 7 +s Fn ( No × No )
3 leftssno 33990 . . . . . . . . 9 ( L ‘𝐴) ⊆ No
43a1i 11 . . . . . . . 8 (𝐴 No → ( L ‘𝐴) ⊆ No )
5 snssi 4738 . . . . . . . 8 (𝐵 No → {𝐵} ⊆ No )
6 xpss12 5595 . . . . . . . 8 ((( L ‘𝐴) ⊆ No ∧ {𝐵} ⊆ No ) → (( L ‘𝐴) × {𝐵}) ⊆ ( No × No ))
74, 5, 6syl2an 595 . . . . . . 7 ((𝐴 No 𝐵 No ) → (( L ‘𝐴) × {𝐵}) ⊆ ( No × No ))
8 ovelimab 7428 . . . . . . 7 (( +s Fn ( No × No ) ∧ (( L ‘𝐴) × {𝐵}) ⊆ ( No × No )) → (𝑥 ∈ ( +s “ (( L ‘𝐴) × {𝐵})) ↔ ∃𝑙 ∈ ( L ‘𝐴)∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟)))
92, 7, 8sylancr 586 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝑥 ∈ ( +s “ (( L ‘𝐴) × {𝐵})) ↔ ∃𝑙 ∈ ( L ‘𝐴)∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟)))
10 oveq2 7263 . . . . . . . . . 10 (𝑟 = 𝐵 → (𝑙 +s 𝑟) = (𝑙 +s 𝐵))
1110eqeq2d 2749 . . . . . . . . 9 (𝑟 = 𝐵 → (𝑥 = (𝑙 +s 𝑟) ↔ 𝑥 = (𝑙 +s 𝐵)))
1211rexsng 4607 . . . . . . . 8 (𝐵 No → (∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟) ↔ 𝑥 = (𝑙 +s 𝐵)))
1312adantl 481 . . . . . . 7 ((𝐴 No 𝐵 No ) → (∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟) ↔ 𝑥 = (𝑙 +s 𝐵)))
1413rexbidv 3225 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑙 ∈ ( L ‘𝐴)∃𝑟 ∈ {𝐵}𝑥 = (𝑙 +s 𝑟) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)))
159, 14bitrd 278 . . . . 5 ((𝐴 No 𝐵 No ) → (𝑥 ∈ ( +s “ (( L ‘𝐴) × {𝐵})) ↔ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)))
1615abbi2dv 2876 . . . 4 ((𝐴 No 𝐵 No ) → ( +s “ (( L ‘𝐴) × {𝐵})) = {𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)})
17 snssi 4738 . . . . . . . 8 (𝐴 No → {𝐴} ⊆ No )
18 leftssno 33990 . . . . . . . . 9 ( L ‘𝐵) ⊆ No
1918a1i 11 . . . . . . . 8 (𝐵 No → ( L ‘𝐵) ⊆ No )
20 xpss12 5595 . . . . . . . 8 (({𝐴} ⊆ No ∧ ( L ‘𝐵) ⊆ No ) → ({𝐴} × ( L ‘𝐵)) ⊆ ( No × No ))
2117, 19, 20syl2an 595 . . . . . . 7 ((𝐴 No 𝐵 No ) → ({𝐴} × ( L ‘𝐵)) ⊆ ( No × No ))
22 ovelimab 7428 . . . . . . 7 (( +s Fn ( No × No ) ∧ ({𝐴} × ( L ‘𝐵)) ⊆ ( No × No )) → (𝑦 ∈ ( +s “ ({𝐴} × ( L ‘𝐵))) ↔ ∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙)))
232, 21, 22sylancr 586 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( L ‘𝐵))) ↔ ∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙)))
24 oveq1 7262 . . . . . . . . . 10 (𝑟 = 𝐴 → (𝑟 +s 𝑙) = (𝐴 +s 𝑙))
2524eqeq2d 2749 . . . . . . . . 9 (𝑟 = 𝐴 → (𝑦 = (𝑟 +s 𝑙) ↔ 𝑦 = (𝐴 +s 𝑙)))
2625rexbidv 3225 . . . . . . . 8 (𝑟 = 𝐴 → (∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)))
2726rexsng 4607 . . . . . . 7 (𝐴 No → (∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)))
2827adantr 480 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑟 ∈ {𝐴}∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝑟 +s 𝑙) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)))
2923, 28bitrd 278 . . . . 5 ((𝐴 No 𝐵 No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( L ‘𝐵))) ↔ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)))
3029abbi2dv 2876 . . . 4 ((𝐴 No 𝐵 No ) → ( +s “ ({𝐴} × ( L ‘𝐵))) = {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)})
3116, 30uneq12d 4094 . . 3 ((𝐴 No 𝐵 No ) → (( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) = ({𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)}))
32 rightssno 33991 . . . . . . . . 9 ( R ‘𝐴) ⊆ No
3332a1i 11 . . . . . . . 8 (𝐴 No → ( R ‘𝐴) ⊆ No )
34 xpss12 5595 . . . . . . . 8 ((( R ‘𝐴) ⊆ No ∧ {𝐵} ⊆ No ) → (( R ‘𝐴) × {𝐵}) ⊆ ( No × No ))
3533, 5, 34syl2an 595 . . . . . . 7 ((𝐴 No 𝐵 No ) → (( R ‘𝐴) × {𝐵}) ⊆ ( No × No ))
36 ovelimab 7428 . . . . . . 7 (( +s Fn ( No × No ) ∧ (( R ‘𝐴) × {𝐵}) ⊆ ( No × No )) → (𝑥 ∈ ( +s “ (( R ‘𝐴) × {𝐵})) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙)))
372, 35, 36sylancr 586 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝑥 ∈ ( +s “ (( R ‘𝐴) × {𝐵})) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙)))
38 oveq2 7263 . . . . . . . . . 10 (𝑙 = 𝐵 → (𝑟 +s 𝑙) = (𝑟 +s 𝐵))
3938eqeq2d 2749 . . . . . . . . 9 (𝑙 = 𝐵 → (𝑥 = (𝑟 +s 𝑙) ↔ 𝑥 = (𝑟 +s 𝐵)))
4039rexsng 4607 . . . . . . . 8 (𝐵 No → (∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙) ↔ 𝑥 = (𝑟 +s 𝐵)))
4140adantl 481 . . . . . . 7 ((𝐴 No 𝐵 No ) → (∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙) ↔ 𝑥 = (𝑟 +s 𝐵)))
4241rexbidv 3225 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑟 ∈ ( R ‘𝐴)∃𝑙 ∈ {𝐵}𝑥 = (𝑟 +s 𝑙) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)))
4337, 42bitrd 278 . . . . 5 ((𝐴 No 𝐵 No ) → (𝑥 ∈ ( +s “ (( R ‘𝐴) × {𝐵})) ↔ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)))
4443abbi2dv 2876 . . . 4 ((𝐴 No 𝐵 No ) → ( +s “ (( R ‘𝐴) × {𝐵})) = {𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)})
45 rightssno 33991 . . . . . . . . 9 ( R ‘𝐵) ⊆ No
4645a1i 11 . . . . . . . 8 (𝐵 No → ( R ‘𝐵) ⊆ No )
47 xpss12 5595 . . . . . . . 8 (({𝐴} ⊆ No ∧ ( R ‘𝐵) ⊆ No ) → ({𝐴} × ( R ‘𝐵)) ⊆ ( No × No ))
4817, 46, 47syl2an 595 . . . . . . 7 ((𝐴 No 𝐵 No ) → ({𝐴} × ( R ‘𝐵)) ⊆ ( No × No ))
49 ovelimab 7428 . . . . . . 7 (( +s Fn ( No × No ) ∧ ({𝐴} × ( R ‘𝐵)) ⊆ ( No × No )) → (𝑦 ∈ ( +s “ ({𝐴} × ( R ‘𝐵))) ↔ ∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟)))
502, 48, 49sylancr 586 . . . . . 6 ((𝐴 No 𝐵 No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( R ‘𝐵))) ↔ ∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟)))
51 oveq1 7262 . . . . . . . . . 10 (𝑙 = 𝐴 → (𝑙 +s 𝑟) = (𝐴 +s 𝑟))
5251eqeq2d 2749 . . . . . . . . 9 (𝑙 = 𝐴 → (𝑦 = (𝑙 +s 𝑟) ↔ 𝑦 = (𝐴 +s 𝑟)))
5352rexbidv 3225 . . . . . . . 8 (𝑙 = 𝐴 → (∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)))
5453rexsng 4607 . . . . . . 7 (𝐴 No → (∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)))
5554adantr 480 . . . . . 6 ((𝐴 No 𝐵 No ) → (∃𝑙 ∈ {𝐴}∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝑙 +s 𝑟) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)))
5650, 55bitrd 278 . . . . 5 ((𝐴 No 𝐵 No ) → (𝑦 ∈ ( +s “ ({𝐴} × ( R ‘𝐵))) ↔ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)))
5756abbi2dv 2876 . . . 4 ((𝐴 No 𝐵 No ) → ( +s “ ({𝐴} × ( R ‘𝐵))) = {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)})
5844, 57uneq12d 4094 . . 3 ((𝐴 No 𝐵 No ) → (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵)))) = ({𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)}))
5931, 58oveq12d 7273 . 2 ((𝐴 No 𝐵 No ) → ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵))))) = (({𝑥 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑥 = (𝑙 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑦 = (𝐴 +s 𝑙)}) |s ({𝑥 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑥 = (𝑟 +s 𝐵)} ∪ {𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑦 = (𝐴 +s 𝑟)})))
601, 59eqtr4d 2781 1 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) = ((( +s “ (( L ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( L ‘𝐵)))) |s (( +s “ (( R ‘𝐴) × {𝐵})) ∪ ( +s “ ({𝐴} × ( R ‘𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  cun 3881  wss 3883  {csn 4558   × cxp 5578  cima 5583   Fn wfn 6413  cfv 6418  (class class class)co 7255   No csur 33770   |s cscut 33904   L cleft 33956   R cright 33957   +s cadds 34043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903  df-scut 33905  df-made 33958  df-old 33959  df-left 33961  df-right 33962  df-norec2 34033  df-adds 34046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator