Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrval2 | Structured version Visualization version GIF version |
Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
Ref | Expression |
---|---|
lkrfval2.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrfval2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrfval2.o | ⊢ 0 = (0g‘𝐷) |
lkrfval2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrfval2.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkrval2 | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
2 | lkrfval2.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lkrfval2.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
4 | lkrfval2.o | . . . . 5 ⊢ 0 = (0g‘𝐷) | |
5 | lkrfval2.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
6 | lkrfval2.k | . . . . 5 ⊢ 𝐾 = (LKer‘𝑊) | |
7 | 2, 3, 4, 5, 6 | ellkr 37030 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝐺 ∈ 𝐹) → (𝑥 ∈ (𝐾‘𝐺) ↔ (𝑥 ∈ 𝑉 ∧ (𝐺‘𝑥) = 0 ))) |
8 | 7 | abbi2dv 2876 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ (𝐺‘𝑥) = 0 )}) |
9 | df-rab 3072 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 } = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ (𝐺‘𝑥) = 0 )} | |
10 | 8, 9 | eqtr4di 2797 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) |
11 | 1, 10 | sylan 579 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 {crab 3067 Vcvv 3422 ‘cfv 6418 Basecbs 16840 Scalarcsca 16891 0gc0g 17067 LFnlclfn 36998 LKerclk 37026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-lfl 36999 df-lkr 37027 |
This theorem is referenced by: lkrlss 37036 |
Copyright terms: Public domain | W3C validator |