Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrval2 Structured version   Visualization version   GIF version

Theorem lkrval2 38427
Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lkrfval2.v 𝑉 = (Baseβ€˜π‘Š)
lkrfval2.d 𝐷 = (Scalarβ€˜π‘Š)
lkrfval2.o 0 = (0gβ€˜π·)
lkrfval2.f 𝐹 = (LFnlβ€˜π‘Š)
lkrfval2.k 𝐾 = (LKerβ€˜π‘Š)
Assertion
Ref Expression
lkrval2 ((π‘Š ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) β†’ (πΎβ€˜πΊ) = {π‘₯ ∈ 𝑉 ∣ (πΊβ€˜π‘₯) = 0 })
Distinct variable groups:   π‘₯,𝐹   π‘₯,𝐺   π‘₯,𝐾   π‘₯,π‘Š
Allowed substitution hints:   𝐷(π‘₯)   𝑉(π‘₯)   𝑋(π‘₯)   0 (π‘₯)

Proof of Theorem lkrval2
StepHypRef Expression
1 elex 3492 . 2 (π‘Š ∈ 𝑋 β†’ π‘Š ∈ V)
2 lkrfval2.v . . . . 5 𝑉 = (Baseβ€˜π‘Š)
3 lkrfval2.d . . . . 5 𝐷 = (Scalarβ€˜π‘Š)
4 lkrfval2.o . . . . 5 0 = (0gβ€˜π·)
5 lkrfval2.f . . . . 5 𝐹 = (LFnlβ€˜π‘Š)
6 lkrfval2.k . . . . 5 𝐾 = (LKerβ€˜π‘Š)
72, 3, 4, 5, 6ellkr 38426 . . . 4 ((π‘Š ∈ V ∧ 𝐺 ∈ 𝐹) β†’ (π‘₯ ∈ (πΎβ€˜πΊ) ↔ (π‘₯ ∈ 𝑉 ∧ (πΊβ€˜π‘₯) = 0 )))
87eqabdv 2866 . . 3 ((π‘Š ∈ V ∧ 𝐺 ∈ 𝐹) β†’ (πΎβ€˜πΊ) = {π‘₯ ∣ (π‘₯ ∈ 𝑉 ∧ (πΊβ€˜π‘₯) = 0 )})
9 df-rab 3432 . . 3 {π‘₯ ∈ 𝑉 ∣ (πΊβ€˜π‘₯) = 0 } = {π‘₯ ∣ (π‘₯ ∈ 𝑉 ∧ (πΊβ€˜π‘₯) = 0 )}
108, 9eqtr4di 2789 . 2 ((π‘Š ∈ V ∧ 𝐺 ∈ 𝐹) β†’ (πΎβ€˜πΊ) = {π‘₯ ∈ 𝑉 ∣ (πΊβ€˜π‘₯) = 0 })
111, 10sylan 579 1 ((π‘Š ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) β†’ (πΎβ€˜πΊ) = {π‘₯ ∈ 𝑉 ∣ (πΊβ€˜π‘₯) = 0 })
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  {cab 2708  {crab 3431  Vcvv 3473  β€˜cfv 6543  Basecbs 17151  Scalarcsca 17207  0gc0g 17392  LFnlclfn 38394  LKerclk 38422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-lfl 38395  df-lkr 38423
This theorem is referenced by:  lkrlss  38432
  Copyright terms: Public domain W3C validator