Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrval2 Structured version   Visualization version   GIF version

Theorem lkrval2 39056
Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lkrfval2.v 𝑉 = (Base‘𝑊)
lkrfval2.d 𝐷 = (Scalar‘𝑊)
lkrfval2.o 0 = (0g𝐷)
lkrfval2.f 𝐹 = (LFnl‘𝑊)
lkrfval2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrval2 ((𝑊𝑋𝐺𝐹) → (𝐾𝐺) = {𝑥𝑉 ∣ (𝐺𝑥) = 0 })
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝑊
Allowed substitution hints:   𝐷(𝑥)   𝑉(𝑥)   𝑋(𝑥)   0 (𝑥)

Proof of Theorem lkrval2
StepHypRef Expression
1 elex 3465 . 2 (𝑊𝑋𝑊 ∈ V)
2 lkrfval2.v . . . . 5 𝑉 = (Base‘𝑊)
3 lkrfval2.d . . . . 5 𝐷 = (Scalar‘𝑊)
4 lkrfval2.o . . . . 5 0 = (0g𝐷)
5 lkrfval2.f . . . . 5 𝐹 = (LFnl‘𝑊)
6 lkrfval2.k . . . . 5 𝐾 = (LKer‘𝑊)
72, 3, 4, 5, 6ellkr 39055 . . . 4 ((𝑊 ∈ V ∧ 𝐺𝐹) → (𝑥 ∈ (𝐾𝐺) ↔ (𝑥𝑉 ∧ (𝐺𝑥) = 0 )))
87eqabdv 2861 . . 3 ((𝑊 ∈ V ∧ 𝐺𝐹) → (𝐾𝐺) = {𝑥 ∣ (𝑥𝑉 ∧ (𝐺𝑥) = 0 )})
9 df-rab 3403 . . 3 {𝑥𝑉 ∣ (𝐺𝑥) = 0 } = {𝑥 ∣ (𝑥𝑉 ∧ (𝐺𝑥) = 0 )}
108, 9eqtr4di 2782 . 2 ((𝑊 ∈ V ∧ 𝐺𝐹) → (𝐾𝐺) = {𝑥𝑉 ∣ (𝐺𝑥) = 0 })
111, 10sylan 580 1 ((𝑊𝑋𝐺𝐹) → (𝐾𝐺) = {𝑥𝑉 ∣ (𝐺𝑥) = 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  {crab 3402  Vcvv 3444  cfv 6499  Basecbs 17155  Scalarcsca 17199  0gc0g 17378  LFnlclfn 39023  LKerclk 39051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-lfl 39024  df-lkr 39052
This theorem is referenced by:  lkrlss  39061
  Copyright terms: Public domain W3C validator