Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrval2 Structured version   Visualization version   GIF version

Theorem lkrval2 39054
Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lkrfval2.v 𝑉 = (Base‘𝑊)
lkrfval2.d 𝐷 = (Scalar‘𝑊)
lkrfval2.o 0 = (0g𝐷)
lkrfval2.f 𝐹 = (LFnl‘𝑊)
lkrfval2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrval2 ((𝑊𝑋𝐺𝐹) → (𝐾𝐺) = {𝑥𝑉 ∣ (𝐺𝑥) = 0 })
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝑊
Allowed substitution hints:   𝐷(𝑥)   𝑉(𝑥)   𝑋(𝑥)   0 (𝑥)

Proof of Theorem lkrval2
StepHypRef Expression
1 elex 3480 . 2 (𝑊𝑋𝑊 ∈ V)
2 lkrfval2.v . . . . 5 𝑉 = (Base‘𝑊)
3 lkrfval2.d . . . . 5 𝐷 = (Scalar‘𝑊)
4 lkrfval2.o . . . . 5 0 = (0g𝐷)
5 lkrfval2.f . . . . 5 𝐹 = (LFnl‘𝑊)
6 lkrfval2.k . . . . 5 𝐾 = (LKer‘𝑊)
72, 3, 4, 5, 6ellkr 39053 . . . 4 ((𝑊 ∈ V ∧ 𝐺𝐹) → (𝑥 ∈ (𝐾𝐺) ↔ (𝑥𝑉 ∧ (𝐺𝑥) = 0 )))
87eqabdv 2868 . . 3 ((𝑊 ∈ V ∧ 𝐺𝐹) → (𝐾𝐺) = {𝑥 ∣ (𝑥𝑉 ∧ (𝐺𝑥) = 0 )})
9 df-rab 3416 . . 3 {𝑥𝑉 ∣ (𝐺𝑥) = 0 } = {𝑥 ∣ (𝑥𝑉 ∧ (𝐺𝑥) = 0 )}
108, 9eqtr4di 2788 . 2 ((𝑊 ∈ V ∧ 𝐺𝐹) → (𝐾𝐺) = {𝑥𝑉 ∣ (𝐺𝑥) = 0 })
111, 10sylan 580 1 ((𝑊𝑋𝐺𝐹) → (𝐾𝐺) = {𝑥𝑉 ∣ (𝐺𝑥) = 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  {crab 3415  Vcvv 3459  cfv 6530  Basecbs 17226  Scalarcsca 17272  0gc0g 17451  LFnlclfn 39021  LKerclk 39049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-lfl 39022  df-lkr 39050
This theorem is referenced by:  lkrlss  39059
  Copyright terms: Public domain W3C validator