![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrval2 | Structured version Visualization version GIF version |
Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
Ref | Expression |
---|---|
lkrfval2.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrfval2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrfval2.o | ⊢ 0 = (0g‘𝐷) |
lkrfval2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrfval2.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkrval2 | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
2 | lkrfval2.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lkrfval2.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
4 | lkrfval2.o | . . . . 5 ⊢ 0 = (0g‘𝐷) | |
5 | lkrfval2.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
6 | lkrfval2.k | . . . . 5 ⊢ 𝐾 = (LKer‘𝑊) | |
7 | 2, 3, 4, 5, 6 | ellkr 39045 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝐺 ∈ 𝐹) → (𝑥 ∈ (𝐾‘𝐺) ↔ (𝑥 ∈ 𝑉 ∧ (𝐺‘𝑥) = 0 ))) |
8 | 7 | eqabdv 2878 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ (𝐺‘𝑥) = 0 )}) |
9 | df-rab 3444 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 } = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ (𝐺‘𝑥) = 0 )} | |
10 | 8, 9 | eqtr4di 2798 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) |
11 | 1, 10 | sylan 579 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 Vcvv 3488 ‘cfv 6573 Basecbs 17258 Scalarcsca 17314 0gc0g 17499 LFnlclfn 39013 LKerclk 39041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-lfl 39014 df-lkr 39042 |
This theorem is referenced by: lkrlss 39051 |
Copyright terms: Public domain | W3C validator |