Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrval2 | Structured version Visualization version GIF version |
Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
Ref | Expression |
---|---|
lkrfval2.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrfval2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrfval2.o | ⊢ 0 = (0g‘𝐷) |
lkrfval2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrfval2.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkrval2 | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3426 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
2 | lkrfval2.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lkrfval2.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
4 | lkrfval2.o | . . . . 5 ⊢ 0 = (0g‘𝐷) | |
5 | lkrfval2.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
6 | lkrfval2.k | . . . . 5 ⊢ 𝐾 = (LKer‘𝑊) | |
7 | 2, 3, 4, 5, 6 | ellkr 36840 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝐺 ∈ 𝐹) → (𝑥 ∈ (𝐾‘𝐺) ↔ (𝑥 ∈ 𝑉 ∧ (𝐺‘𝑥) = 0 ))) |
8 | 7 | abbi2dv 2874 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ (𝐺‘𝑥) = 0 )}) |
9 | df-rab 3070 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 } = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ (𝐺‘𝑥) = 0 )} | |
10 | 8, 9 | eqtr4di 2796 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) |
11 | 1, 10 | sylan 583 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {cab 2714 {crab 3065 Vcvv 3408 ‘cfv 6380 Basecbs 16760 Scalarcsca 16805 0gc0g 16944 LFnlclfn 36808 LKerclk 36836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-lfl 36809 df-lkr 36837 |
This theorem is referenced by: lkrlss 36846 |
Copyright terms: Public domain | W3C validator |