| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrval2 | Structured version Visualization version GIF version | ||
| Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
| Ref | Expression |
|---|---|
| lkrfval2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrfval2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrfval2.o | ⊢ 0 = (0g‘𝐷) |
| lkrfval2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrfval2.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lkrval2 | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | lkrfval2.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lkrfval2.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 4 | lkrfval2.o | . . . . 5 ⊢ 0 = (0g‘𝐷) | |
| 5 | lkrfval2.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 6 | lkrfval2.k | . . . . 5 ⊢ 𝐾 = (LKer‘𝑊) | |
| 7 | 2, 3, 4, 5, 6 | ellkr 39053 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝐺 ∈ 𝐹) → (𝑥 ∈ (𝐾‘𝐺) ↔ (𝑥 ∈ 𝑉 ∧ (𝐺‘𝑥) = 0 ))) |
| 8 | 7 | eqabdv 2868 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ (𝐺‘𝑥) = 0 )}) |
| 9 | df-rab 3416 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 } = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ (𝐺‘𝑥) = 0 )} | |
| 10 | 8, 9 | eqtr4di 2788 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) |
| 11 | 1, 10 | sylan 580 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 {crab 3415 Vcvv 3459 ‘cfv 6530 Basecbs 17226 Scalarcsca 17272 0gc0g 17451 LFnlclfn 39021 LKerclk 39049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-map 8840 df-lfl 39022 df-lkr 39050 |
| This theorem is referenced by: lkrlss 39059 |
| Copyright terms: Public domain | W3C validator |