Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofrn2 Structured version   Visualization version   GIF version

Theorem ofrn2 32570
Description: The range of the function operation. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
ofrn.1 (𝜑𝐹:𝐴𝐵)
ofrn.2 (𝜑𝐺:𝐴𝐵)
ofrn.3 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
ofrn.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
ofrn2 (𝜑 → ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))

Proof of Theorem ofrn2
Dummy variables 𝑥 𝑦 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofrn.1 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
21ffnd 6691 . . . . . 6 (𝜑𝐹 Fn 𝐴)
3 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → 𝑎𝐴)
4 fnfvelrn 7054 . . . . . 6 ((𝐹 Fn 𝐴𝑎𝐴) → (𝐹𝑎) ∈ ran 𝐹)
52, 3, 4syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → (𝐹𝑎) ∈ ran 𝐹)
6 ofrn.2 . . . . . . 7 (𝜑𝐺:𝐴𝐵)
76ffnd 6691 . . . . . 6 (𝜑𝐺 Fn 𝐴)
8 fnfvelrn 7054 . . . . . 6 ((𝐺 Fn 𝐴𝑎𝐴) → (𝐺𝑎) ∈ ran 𝐺)
97, 3, 8syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → (𝐺𝑎) ∈ ran 𝐺)
10 simprr 772 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → 𝑧 = ((𝐹𝑎) + (𝐺𝑎)))
11 rspceov 7438 . . . . 5 (((𝐹𝑎) ∈ ran 𝐹 ∧ (𝐺𝑎) ∈ ran 𝐺𝑧 = ((𝐹𝑎) + (𝐺𝑎))) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))
125, 9, 10, 11syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))
1312rexlimdvaa 3136 . . 3 (𝜑 → (∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎)) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)))
1413ss2abdv 4031 . 2 (𝜑 → {𝑧 ∣ ∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎))} ⊆ {𝑧 ∣ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)})
15 ofrn.4 . . . . 5 (𝜑𝐴𝑉)
16 inidm 4192 . . . . 5 (𝐴𝐴) = 𝐴
17 eqidd 2731 . . . . 5 ((𝜑𝑎𝐴) → (𝐹𝑎) = (𝐹𝑎))
18 eqidd 2731 . . . . 5 ((𝜑𝑎𝐴) → (𝐺𝑎) = (𝐺𝑎))
192, 7, 15, 15, 16, 17, 18offval 7664 . . . 4 (𝜑 → (𝐹f + 𝐺) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
2019rneqd 5904 . . 3 (𝜑 → ran (𝐹f + 𝐺) = ran (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
21 eqid 2730 . . . 4 (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎)))
2221rnmpt 5923 . . 3 ran (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = {𝑧 ∣ ∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎))}
2320, 22eqtrdi 2781 . 2 (𝜑 → ran (𝐹f + 𝐺) = {𝑧 ∣ ∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎))})
24 ofrn.3 . . . . 5 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
2524ffnd 6691 . . . 4 (𝜑+ Fn (𝐵 × 𝐵))
261frnd 6698 . . . . 5 (𝜑 → ran 𝐹𝐵)
276frnd 6698 . . . . 5 (𝜑 → ran 𝐺𝐵)
28 xpss12 5655 . . . . 5 ((ran 𝐹𝐵 ∧ ran 𝐺𝐵) → (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵))
2926, 27, 28syl2anc 584 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵))
30 ovelimab 7569 . . . 4 (( + Fn (𝐵 × 𝐵) ∧ (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵)) → (𝑧 ∈ ( + “ (ran 𝐹 × ran 𝐺)) ↔ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)))
3125, 29, 30syl2anc 584 . . 3 (𝜑 → (𝑧 ∈ ( + “ (ran 𝐹 × ran 𝐺)) ↔ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)))
3231eqabdv 2862 . 2 (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) = {𝑧 ∣ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)})
3314, 23, 323sstr4d 4004 1 (𝜑 → ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  wss 3916  cmpt 5190   × cxp 5638  ran crn 5641  cima 5643   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389  f cof 7653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655
This theorem is referenced by:  sibfof  34337
  Copyright terms: Public domain W3C validator