Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofrn2 Structured version   Visualization version   GIF version

Theorem ofrn2 32585
Description: The range of the function operation. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
ofrn.1 (𝜑𝐹:𝐴𝐵)
ofrn.2 (𝜑𝐺:𝐴𝐵)
ofrn.3 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
ofrn.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
ofrn2 (𝜑 → ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))

Proof of Theorem ofrn2
Dummy variables 𝑥 𝑦 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofrn.1 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
21ffnd 6717 . . . . . 6 (𝜑𝐹 Fn 𝐴)
3 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → 𝑎𝐴)
4 fnfvelrn 7080 . . . . . 6 ((𝐹 Fn 𝐴𝑎𝐴) → (𝐹𝑎) ∈ ran 𝐹)
52, 3, 4syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → (𝐹𝑎) ∈ ran 𝐹)
6 ofrn.2 . . . . . . 7 (𝜑𝐺:𝐴𝐵)
76ffnd 6717 . . . . . 6 (𝜑𝐺 Fn 𝐴)
8 fnfvelrn 7080 . . . . . 6 ((𝐺 Fn 𝐴𝑎𝐴) → (𝐺𝑎) ∈ ran 𝐺)
97, 3, 8syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → (𝐺𝑎) ∈ ran 𝐺)
10 simprr 772 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → 𝑧 = ((𝐹𝑎) + (𝐺𝑎)))
11 rspceov 7462 . . . . 5 (((𝐹𝑎) ∈ ran 𝐹 ∧ (𝐺𝑎) ∈ ran 𝐺𝑧 = ((𝐹𝑎) + (𝐺𝑎))) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))
125, 9, 10, 11syl3anc 1372 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))
1312rexlimdvaa 3143 . . 3 (𝜑 → (∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎)) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)))
1413ss2abdv 4046 . 2 (𝜑 → {𝑧 ∣ ∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎))} ⊆ {𝑧 ∣ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)})
15 ofrn.4 . . . . 5 (𝜑𝐴𝑉)
16 inidm 4207 . . . . 5 (𝐴𝐴) = 𝐴
17 eqidd 2735 . . . . 5 ((𝜑𝑎𝐴) → (𝐹𝑎) = (𝐹𝑎))
18 eqidd 2735 . . . . 5 ((𝜑𝑎𝐴) → (𝐺𝑎) = (𝐺𝑎))
192, 7, 15, 15, 16, 17, 18offval 7688 . . . 4 (𝜑 → (𝐹f + 𝐺) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
2019rneqd 5929 . . 3 (𝜑 → ran (𝐹f + 𝐺) = ran (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
21 eqid 2734 . . . 4 (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎)))
2221rnmpt 5948 . . 3 ran (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = {𝑧 ∣ ∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎))}
2320, 22eqtrdi 2785 . 2 (𝜑 → ran (𝐹f + 𝐺) = {𝑧 ∣ ∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎))})
24 ofrn.3 . . . . 5 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
2524ffnd 6717 . . . 4 (𝜑+ Fn (𝐵 × 𝐵))
261frnd 6724 . . . . 5 (𝜑 → ran 𝐹𝐵)
276frnd 6724 . . . . 5 (𝜑 → ran 𝐺𝐵)
28 xpss12 5680 . . . . 5 ((ran 𝐹𝐵 ∧ ran 𝐺𝐵) → (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵))
2926, 27, 28syl2anc 584 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵))
30 ovelimab 7593 . . . 4 (( + Fn (𝐵 × 𝐵) ∧ (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵)) → (𝑧 ∈ ( + “ (ran 𝐹 × ran 𝐺)) ↔ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)))
3125, 29, 30syl2anc 584 . . 3 (𝜑 → (𝑧 ∈ ( + “ (ran 𝐹 × ran 𝐺)) ↔ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)))
3231eqabdv 2867 . 2 (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) = {𝑧 ∣ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)})
3314, 23, 323sstr4d 4019 1 (𝜑 → ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {cab 2712  wrex 3059  wss 3931  cmpt 5205   × cxp 5663  ran crn 5666  cima 5668   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  f cof 7677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679
This theorem is referenced by:  sibfof  34301
  Copyright terms: Public domain W3C validator