Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofrn2 Structured version   Visualization version   GIF version

Theorem ofrn2 32661
Description: The range of the function operation. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
ofrn.1 (𝜑𝐹:𝐴𝐵)
ofrn.2 (𝜑𝐺:𝐴𝐵)
ofrn.3 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
ofrn.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
ofrn2 (𝜑 → ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))

Proof of Theorem ofrn2
Dummy variables 𝑥 𝑦 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofrn.1 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
21ffnd 6750 . . . . . 6 (𝜑𝐹 Fn 𝐴)
3 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → 𝑎𝐴)
4 fnfvelrn 7116 . . . . . 6 ((𝐹 Fn 𝐴𝑎𝐴) → (𝐹𝑎) ∈ ran 𝐹)
52, 3, 4syl2an2r 684 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → (𝐹𝑎) ∈ ran 𝐹)
6 ofrn.2 . . . . . . 7 (𝜑𝐺:𝐴𝐵)
76ffnd 6750 . . . . . 6 (𝜑𝐺 Fn 𝐴)
8 fnfvelrn 7116 . . . . . 6 ((𝐺 Fn 𝐴𝑎𝐴) → (𝐺𝑎) ∈ ran 𝐺)
97, 3, 8syl2an2r 684 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → (𝐺𝑎) ∈ ran 𝐺)
10 simprr 772 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → 𝑧 = ((𝐹𝑎) + (𝐺𝑎)))
11 rspceov 7499 . . . . 5 (((𝐹𝑎) ∈ ran 𝐹 ∧ (𝐺𝑎) ∈ ran 𝐺𝑧 = ((𝐹𝑎) + (𝐺𝑎))) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))
125, 9, 10, 11syl3anc 1371 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))
1312rexlimdvaa 3162 . . 3 (𝜑 → (∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎)) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)))
1413ss2abdv 4089 . 2 (𝜑 → {𝑧 ∣ ∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎))} ⊆ {𝑧 ∣ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)})
15 ofrn.4 . . . . 5 (𝜑𝐴𝑉)
16 inidm 4248 . . . . 5 (𝐴𝐴) = 𝐴
17 eqidd 2741 . . . . 5 ((𝜑𝑎𝐴) → (𝐹𝑎) = (𝐹𝑎))
18 eqidd 2741 . . . . 5 ((𝜑𝑎𝐴) → (𝐺𝑎) = (𝐺𝑎))
192, 7, 15, 15, 16, 17, 18offval 7725 . . . 4 (𝜑 → (𝐹f + 𝐺) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
2019rneqd 5963 . . 3 (𝜑 → ran (𝐹f + 𝐺) = ran (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
21 eqid 2740 . . . 4 (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎)))
2221rnmpt 5982 . . 3 ran (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = {𝑧 ∣ ∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎))}
2320, 22eqtrdi 2796 . 2 (𝜑 → ran (𝐹f + 𝐺) = {𝑧 ∣ ∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎))})
24 ofrn.3 . . . . 5 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
2524ffnd 6750 . . . 4 (𝜑+ Fn (𝐵 × 𝐵))
261frnd 6757 . . . . 5 (𝜑 → ran 𝐹𝐵)
276frnd 6757 . . . . 5 (𝜑 → ran 𝐺𝐵)
28 xpss12 5715 . . . . 5 ((ran 𝐹𝐵 ∧ ran 𝐺𝐵) → (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵))
2926, 27, 28syl2anc 583 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵))
30 ovelimab 7630 . . . 4 (( + Fn (𝐵 × 𝐵) ∧ (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵)) → (𝑧 ∈ ( + “ (ran 𝐹 × ran 𝐺)) ↔ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)))
3125, 29, 30syl2anc 583 . . 3 (𝜑 → (𝑧 ∈ ( + “ (ran 𝐹 × ran 𝐺)) ↔ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)))
3231eqabdv 2878 . 2 (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) = {𝑧 ∣ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)})
3314, 23, 323sstr4d 4056 1 (𝜑 → ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  wss 3976  cmpt 5249   × cxp 5698  ran crn 5701  cima 5703   Fn wfn 6570  wf 6571  cfv 6575  (class class class)co 7450  f cof 7714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-of 7716
This theorem is referenced by:  sibfof  34307
  Copyright terms: Public domain W3C validator