| Step | Hyp | Ref
| Expression |
| 1 | | ofrn.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 2 | 1 | ffnd 6717 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)))) → 𝑎 ∈ 𝐴) |
| 4 | | fnfvelrn 7080 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) ∈ ran 𝐹) |
| 5 | 2, 3, 4 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)))) → (𝐹‘𝑎) ∈ ran 𝐹) |
| 6 | | ofrn.2 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| 7 | 6 | ffnd 6717 |
. . . . . 6
⊢ (𝜑 → 𝐺 Fn 𝐴) |
| 8 | | fnfvelrn 7080 |
. . . . . 6
⊢ ((𝐺 Fn 𝐴 ∧ 𝑎 ∈ 𝐴) → (𝐺‘𝑎) ∈ ran 𝐺) |
| 9 | 7, 3, 8 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)))) → (𝐺‘𝑎) ∈ ran 𝐺) |
| 10 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)))) → 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎))) |
| 11 | | rspceov 7462 |
. . . . 5
⊢ (((𝐹‘𝑎) ∈ ran 𝐹 ∧ (𝐺‘𝑎) ∈ ran 𝐺 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎))) → ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)) |
| 12 | 5, 9, 10, 11 | syl3anc 1372 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)))) → ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)) |
| 13 | 12 | rexlimdvaa 3143 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎)) → ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))) |
| 14 | 13 | ss2abdv 4046 |
. 2
⊢ (𝜑 → {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎))} ⊆ {𝑧 ∣ ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)}) |
| 15 | | ofrn.4 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 16 | | inidm 4207 |
. . . . 5
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 17 | | eqidd 2735 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) = (𝐹‘𝑎)) |
| 18 | | eqidd 2735 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐺‘𝑎) = (𝐺‘𝑎)) |
| 19 | 2, 7, 15, 15, 16, 17, 18 | offval 7688 |
. . . 4
⊢ (𝜑 → (𝐹 ∘f + 𝐺) = (𝑎 ∈ 𝐴 ↦ ((𝐹‘𝑎) + (𝐺‘𝑎)))) |
| 20 | 19 | rneqd 5929 |
. . 3
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) = ran (𝑎 ∈ 𝐴 ↦ ((𝐹‘𝑎) + (𝐺‘𝑎)))) |
| 21 | | eqid 2734 |
. . . 4
⊢ (𝑎 ∈ 𝐴 ↦ ((𝐹‘𝑎) + (𝐺‘𝑎))) = (𝑎 ∈ 𝐴 ↦ ((𝐹‘𝑎) + (𝐺‘𝑎))) |
| 22 | 21 | rnmpt 5948 |
. . 3
⊢ ran
(𝑎 ∈ 𝐴 ↦ ((𝐹‘𝑎) + (𝐺‘𝑎))) = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎))} |
| 23 | 20, 22 | eqtrdi 2785 |
. 2
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = ((𝐹‘𝑎) + (𝐺‘𝑎))}) |
| 24 | | ofrn.3 |
. . . . 5
⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐶) |
| 25 | 24 | ffnd 6717 |
. . . 4
⊢ (𝜑 → + Fn (𝐵 × 𝐵)) |
| 26 | 1 | frnd 6724 |
. . . . 5
⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| 27 | 6 | frnd 6724 |
. . . . 5
⊢ (𝜑 → ran 𝐺 ⊆ 𝐵) |
| 28 | | xpss12 5680 |
. . . . 5
⊢ ((ran
𝐹 ⊆ 𝐵 ∧ ran 𝐺 ⊆ 𝐵) → (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵)) |
| 29 | 26, 27, 28 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵)) |
| 30 | | ovelimab 7593 |
. . . 4
⊢ (( + Fn (𝐵 × 𝐵) ∧ (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵)) → (𝑧 ∈ ( + “ (ran 𝐹 × ran 𝐺)) ↔ ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))) |
| 31 | 25, 29, 30 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ( + “ (ran 𝐹 × ran 𝐺)) ↔ ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))) |
| 32 | 31 | eqabdv 2867 |
. 2
⊢ (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) = {𝑧 ∣ ∃𝑥 ∈ ran 𝐹∃𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)}) |
| 33 | 14, 23, 32 | 3sstr4d 4019 |
1
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) |