![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspsn | Structured version Visualization version GIF version |
Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
rspsn.b | β’ π΅ = (Baseβπ ) |
rspsn.k | β’ πΎ = (RSpanβπ ) |
rspsn.d | β’ β₯ = (β₯rβπ ) |
Ref | Expression |
---|---|
rspsn | β’ ((π β Ring β§ πΊ β π΅) β (πΎβ{πΊ}) = {π₯ β£ πΊ β₯ π₯}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2735 | . . . . 5 β’ (π₯ = (π(.rβπ )πΊ) β (π(.rβπ )πΊ) = π₯) | |
2 | 1 | a1i 11 | . . . 4 β’ ((π β Ring β§ πΊ β π΅) β (π₯ = (π(.rβπ )πΊ) β (π(.rβπ )πΊ) = π₯)) |
3 | 2 | rexbidv 3175 | . . 3 β’ ((π β Ring β§ πΊ β π΅) β (βπ β π΅ π₯ = (π(.rβπ )πΊ) β βπ β π΅ (π(.rβπ )πΊ) = π₯)) |
4 | rlmlmod 21095 | . . . 4 β’ (π β Ring β (ringLModβπ ) β LMod) | |
5 | rlmsca2 21091 | . . . . 5 β’ ( I βπ ) = (Scalarβ(ringLModβπ )) | |
6 | baseid 17182 | . . . . . 6 β’ Base = Slot (Baseβndx) | |
7 | rspsn.b | . . . . . 6 β’ π΅ = (Baseβπ ) | |
8 | 6, 7 | strfvi 17158 | . . . . 5 β’ π΅ = (Baseβ( I βπ )) |
9 | rlmbas 21085 | . . . . . 6 β’ (Baseβπ ) = (Baseβ(ringLModβπ )) | |
10 | 7, 9 | eqtri 2756 | . . . . 5 β’ π΅ = (Baseβ(ringLModβπ )) |
11 | rlmvsca 21092 | . . . . 5 β’ (.rβπ ) = ( Β·π β(ringLModβπ )) | |
12 | rspsn.k | . . . . . 6 β’ πΎ = (RSpanβπ ) | |
13 | rspval 21106 | . . . . . 6 β’ (RSpanβπ ) = (LSpanβ(ringLModβπ )) | |
14 | 12, 13 | eqtri 2756 | . . . . 5 β’ πΎ = (LSpanβ(ringLModβπ )) |
15 | 5, 8, 10, 11, 14 | lspsnel 20886 | . . . 4 β’ (((ringLModβπ ) β LMod β§ πΊ β π΅) β (π₯ β (πΎβ{πΊ}) β βπ β π΅ π₯ = (π(.rβπ )πΊ))) |
16 | 4, 15 | sylan 579 | . . 3 β’ ((π β Ring β§ πΊ β π΅) β (π₯ β (πΎβ{πΊ}) β βπ β π΅ π₯ = (π(.rβπ )πΊ))) |
17 | rspsn.d | . . . . 5 β’ β₯ = (β₯rβπ ) | |
18 | eqid 2728 | . . . . 5 β’ (.rβπ ) = (.rβπ ) | |
19 | 7, 17, 18 | dvdsr2 20301 | . . . 4 β’ (πΊ β π΅ β (πΊ β₯ π₯ β βπ β π΅ (π(.rβπ )πΊ) = π₯)) |
20 | 19 | adantl 481 | . . 3 β’ ((π β Ring β§ πΊ β π΅) β (πΊ β₯ π₯ β βπ β π΅ (π(.rβπ )πΊ) = π₯)) |
21 | 3, 16, 20 | 3bitr4d 311 | . 2 β’ ((π β Ring β§ πΊ β π΅) β (π₯ β (πΎβ{πΊ}) β πΊ β₯ π₯)) |
22 | 21 | eqabdv 2863 | 1 β’ ((π β Ring β§ πΊ β π΅) β (πΎβ{πΊ}) = {π₯ β£ πΊ β₯ π₯}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 {cab 2705 βwrex 3067 {csn 4629 class class class wbr 5148 I cid 5575 βcfv 6548 (class class class)co 7420 ndxcnx 17161 Basecbs 17179 .rcmulr 17233 Ringcrg 20172 β₯rcdsr 20292 LModclmod 20742 LSpanclspn 20854 ringLModcrglmod 21056 RSpancrsp 21102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-ip 17250 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-minusg 18893 df-sbg 18894 df-subg 19077 df-mgp 20074 df-ur 20121 df-ring 20174 df-dvdsr 20295 df-subrg 20507 df-lmod 20744 df-lss 20815 df-lsp 20855 df-sra 21057 df-rgmod 21058 df-rsp 21104 |
This theorem is referenced by: lidldvgen 21223 zndvds 21482 algextdeglem6 33390 aks6d1c6isolem3 41648 |
Copyright terms: Public domain | W3C validator |