| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspsn | Structured version Visualization version GIF version | ||
| Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| rspsn.b | ⊢ 𝐵 = (Base‘𝑅) |
| rspsn.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| rspsn.d | ⊢ ∥ = (∥r‘𝑅) |
| Ref | Expression |
|---|---|
| rspsn | ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2740 | . . . . 5 ⊢ (𝑥 = (𝑎(.r‘𝑅)𝐺) ↔ (𝑎(.r‘𝑅)𝐺) = 𝑥) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑥 = (𝑎(.r‘𝑅)𝐺) ↔ (𝑎(.r‘𝑅)𝐺) = 𝑥)) |
| 3 | 2 | rexbidv 3158 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (∃𝑎 ∈ 𝐵 𝑥 = (𝑎(.r‘𝑅)𝐺) ↔ ∃𝑎 ∈ 𝐵 (𝑎(.r‘𝑅)𝐺) = 𝑥)) |
| 4 | rlmlmod 21147 | . . . 4 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 5 | rlmsca2 21143 | . . . . 5 ⊢ ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅)) | |
| 6 | baseid 17133 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
| 7 | rspsn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | 6, 7 | strfvi 17111 | . . . . 5 ⊢ 𝐵 = (Base‘( I ‘𝑅)) |
| 9 | rlmbas 21137 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
| 10 | 7, 9 | eqtri 2756 | . . . . 5 ⊢ 𝐵 = (Base‘(ringLMod‘𝑅)) |
| 11 | rlmvsca 21144 | . . . . 5 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
| 12 | rspsn.k | . . . . . 6 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 13 | rspval 21158 | . . . . . 6 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
| 14 | 12, 13 | eqtri 2756 | . . . . 5 ⊢ 𝐾 = (LSpan‘(ringLMod‘𝑅)) |
| 15 | 5, 8, 10, 11, 14 | ellspsn 20946 | . . . 4 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ ∃𝑎 ∈ 𝐵 𝑥 = (𝑎(.r‘𝑅)𝐺))) |
| 16 | 4, 15 | sylan 580 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ ∃𝑎 ∈ 𝐵 𝑥 = (𝑎(.r‘𝑅)𝐺))) |
| 17 | rspsn.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 18 | eqid 2733 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | 7, 17, 18 | dvdsr2 20291 | . . . 4 ⊢ (𝐺 ∈ 𝐵 → (𝐺 ∥ 𝑥 ↔ ∃𝑎 ∈ 𝐵 (𝑎(.r‘𝑅)𝐺) = 𝑥)) |
| 20 | 19 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐺 ∥ 𝑥 ↔ ∃𝑎 ∈ 𝐵 (𝑎(.r‘𝑅)𝐺) = 𝑥)) |
| 21 | 3, 16, 20 | 3bitr4d 311 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝐺 ∥ 𝑥)) |
| 22 | 21 | eqabdv 2866 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3058 {csn 4577 class class class wbr 5095 I cid 5515 ‘cfv 6489 (class class class)co 7355 ndxcnx 17114 Basecbs 17130 .rcmulr 17172 Ringcrg 20161 ∥rcdsr 20282 LModclmod 20803 LSpanclspn 20914 ringLModcrglmod 21116 RSpancrsp 21154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-ip 17189 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19046 df-mgp 20069 df-ur 20110 df-ring 20163 df-dvdsr 20285 df-subrg 20495 df-lmod 20805 df-lss 20875 df-lsp 20915 df-sra 21117 df-rgmod 21118 df-rsp 21156 |
| This theorem is referenced by: lidldvgen 21281 zndvds 21496 ellpi 33349 algextdeglem6 33746 aks6d1c6isolem3 42279 rhmqusspan 42288 |
| Copyright terms: Public domain | W3C validator |