| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspsn | Structured version Visualization version GIF version | ||
| Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| rspsn.b | ⊢ 𝐵 = (Base‘𝑅) |
| rspsn.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| rspsn.d | ⊢ ∥ = (∥r‘𝑅) |
| Ref | Expression |
|---|---|
| rspsn | ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2737 | . . . . 5 ⊢ (𝑥 = (𝑎(.r‘𝑅)𝐺) ↔ (𝑎(.r‘𝑅)𝐺) = 𝑥) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑥 = (𝑎(.r‘𝑅)𝐺) ↔ (𝑎(.r‘𝑅)𝐺) = 𝑥)) |
| 3 | 2 | rexbidv 3154 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (∃𝑎 ∈ 𝐵 𝑥 = (𝑎(.r‘𝑅)𝐺) ↔ ∃𝑎 ∈ 𝐵 (𝑎(.r‘𝑅)𝐺) = 𝑥)) |
| 4 | rlmlmod 21130 | . . . 4 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 5 | rlmsca2 21126 | . . . . 5 ⊢ ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅)) | |
| 6 | baseid 17115 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
| 7 | rspsn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | 6, 7 | strfvi 17093 | . . . . 5 ⊢ 𝐵 = (Base‘( I ‘𝑅)) |
| 9 | rlmbas 21120 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
| 10 | 7, 9 | eqtri 2753 | . . . . 5 ⊢ 𝐵 = (Base‘(ringLMod‘𝑅)) |
| 11 | rlmvsca 21127 | . . . . 5 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
| 12 | rspsn.k | . . . . . 6 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 13 | rspval 21141 | . . . . . 6 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
| 14 | 12, 13 | eqtri 2753 | . . . . 5 ⊢ 𝐾 = (LSpan‘(ringLMod‘𝑅)) |
| 15 | 5, 8, 10, 11, 14 | ellspsn 20929 | . . . 4 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ ∃𝑎 ∈ 𝐵 𝑥 = (𝑎(.r‘𝑅)𝐺))) |
| 16 | 4, 15 | sylan 580 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ ∃𝑎 ∈ 𝐵 𝑥 = (𝑎(.r‘𝑅)𝐺))) |
| 17 | rspsn.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 18 | eqid 2730 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | 7, 17, 18 | dvdsr2 20274 | . . . 4 ⊢ (𝐺 ∈ 𝐵 → (𝐺 ∥ 𝑥 ↔ ∃𝑎 ∈ 𝐵 (𝑎(.r‘𝑅)𝐺) = 𝑥)) |
| 20 | 19 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐺 ∥ 𝑥 ↔ ∃𝑎 ∈ 𝐵 (𝑎(.r‘𝑅)𝐺) = 𝑥)) |
| 21 | 3, 16, 20 | 3bitr4d 311 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝐺 ∥ 𝑥)) |
| 22 | 21 | eqabdv 2862 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {cab 2708 ∃wrex 3054 {csn 4574 class class class wbr 5089 I cid 5508 ‘cfv 6477 (class class class)co 7341 ndxcnx 17096 Basecbs 17112 .rcmulr 17154 Ringcrg 20144 ∥rcdsr 20265 LModclmod 20786 LSpanclspn 20897 ringLModcrglmod 21099 RSpancrsp 21137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-mgp 20052 df-ur 20093 df-ring 20146 df-dvdsr 20268 df-subrg 20478 df-lmod 20788 df-lss 20858 df-lsp 20898 df-sra 21100 df-rgmod 21101 df-rsp 21139 |
| This theorem is referenced by: lidldvgen 21264 zndvds 21479 ellpi 33328 algextdeglem6 33725 aks6d1c6isolem3 42188 rhmqusspan 42197 |
| Copyright terms: Public domain | W3C validator |