![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapoc | Structured version Visualization version GIF version |
Description: Express our constructed orthocomplement (polarity) in terms of the Hilbert space definition of orthocomplement. Lines 24 and 25 in [Holland95] p. 14. (Contributed by NM, 17-Jun-2015.) |
Ref | Expression |
---|---|
hdmapoc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapoc.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapoc.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapoc.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmapoc.z | ⊢ 0 = (0g‘𝑅) |
hdmapoc.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
hdmapoc.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapoc.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapoc.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
Ref | Expression |
---|---|
hdmapoc | ⊢ (𝜑 → (𝑂‘𝑋) = {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapoc.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | hdmapoc.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) | |
3 | hdmapoc.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | hdmapoc.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | hdmapoc.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑈) | |
6 | hdmapoc.o | . . . . . . . 8 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
7 | 3, 4, 5, 6 | dochssv 38043 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑂‘𝑋) ⊆ 𝑉) |
8 | 1, 2, 7 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑋) ⊆ 𝑉) |
9 | 8 | sseld 3894 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝑂‘𝑋) → 𝑦 ∈ 𝑉)) |
10 | 9 | pm4.71rd 563 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (𝑂‘𝑋) ↔ (𝑦 ∈ 𝑉 ∧ 𝑦 ∈ (𝑂‘𝑋)))) |
11 | eqid 2797 | . . . . . . . . 9 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
12 | eqid 2797 | . . . . . . . . 9 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
13 | 3, 4, 1 | dvhlmod 37798 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ LMod) |
14 | 13 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → 𝑈 ∈ LMod) |
15 | 3, 4, 5, 11, 6 | dochlss 38042 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑂‘𝑋) ∈ (LSubSp‘𝑈)) |
16 | 1, 2, 15 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑂‘𝑋) ∈ (LSubSp‘𝑈)) |
17 | 16 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑂‘𝑋) ∈ (LSubSp‘𝑈)) |
18 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) | |
19 | 5, 11, 12, 14, 17, 18 | lspsnel5 19461 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑦 ∈ (𝑂‘𝑋) ↔ ((LSpan‘𝑈)‘{𝑦}) ⊆ (𝑂‘𝑋))) |
20 | eqid 2797 | . . . . . . . . 9 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
21 | 1 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
22 | 3, 4, 5, 12, 20 | dihlsprn 38019 | . . . . . . . . . 10 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑦 ∈ 𝑉) → ((LSpan‘𝑈)‘{𝑦}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
23 | 21, 18, 22 | syl2anc 584 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → ((LSpan‘𝑈)‘{𝑦}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
24 | 3, 20, 4, 5, 6 | dochcl 38041 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑂‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
25 | 1, 2, 24 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑂‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
26 | 25 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑂‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
27 | 3, 20, 6, 21, 23, 26 | dochord 38058 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (((LSpan‘𝑈)‘{𝑦}) ⊆ (𝑂‘𝑋) ↔ (𝑂‘(𝑂‘𝑋)) ⊆ (𝑂‘((LSpan‘𝑈)‘{𝑦})))) |
28 | 18 | snssd 4655 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → {𝑦} ⊆ 𝑉) |
29 | 3, 4, 6, 5, 12, 21, 28 | dochocsp 38067 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑂‘((LSpan‘𝑈)‘{𝑦})) = (𝑂‘{𝑦})) |
30 | 29 | sseq2d 3926 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → ((𝑂‘(𝑂‘𝑋)) ⊆ (𝑂‘((LSpan‘𝑈)‘{𝑦})) ↔ (𝑂‘(𝑂‘𝑋)) ⊆ (𝑂‘{𝑦}))) |
31 | 2 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → 𝑋 ⊆ 𝑉) |
32 | 3, 20, 4, 5, 6 | dochcl 38041 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑦} ⊆ 𝑉) → (𝑂‘{𝑦}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
33 | 21, 28, 32 | syl2anc 584 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑂‘{𝑦}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
34 | 3, 4, 5, 20, 6, 21, 31, 33 | dochsscl 38056 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑋 ⊆ (𝑂‘{𝑦}) ↔ (𝑂‘(𝑂‘𝑋)) ⊆ (𝑂‘{𝑦}))) |
35 | 30, 34 | bitr4d 283 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → ((𝑂‘(𝑂‘𝑋)) ⊆ (𝑂‘((LSpan‘𝑈)‘{𝑦})) ↔ 𝑋 ⊆ (𝑂‘{𝑦}))) |
36 | 19, 27, 35 | 3bitrd 306 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑦 ∈ (𝑂‘𝑋) ↔ 𝑋 ⊆ (𝑂‘{𝑦}))) |
37 | dfss3 3884 | . . . . . . 7 ⊢ (𝑋 ⊆ (𝑂‘{𝑦}) ↔ ∀𝑧 ∈ 𝑋 𝑧 ∈ (𝑂‘{𝑦})) | |
38 | 36, 37 | syl6bb 288 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑦 ∈ (𝑂‘𝑋) ↔ ∀𝑧 ∈ 𝑋 𝑧 ∈ (𝑂‘{𝑦}))) |
39 | hdmapoc.r | . . . . . . . . 9 ⊢ 𝑅 = (Scalar‘𝑈) | |
40 | hdmapoc.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
41 | hdmapoc.s | . . . . . . . . 9 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
42 | 1 | ad2antrr 722 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
43 | 31 | sselda 3895 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑉) |
44 | simplr 765 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → 𝑦 ∈ 𝑉) | |
45 | 3, 6, 4, 5, 39, 40, 41, 42, 43, 44 | hdmapellkr 38602 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → (((𝑆‘𝑧)‘𝑦) = 0 ↔ 𝑦 ∈ (𝑂‘{𝑧}))) |
46 | 3, 6, 4, 5, 42, 44, 43 | dochsncom 38070 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → (𝑦 ∈ (𝑂‘{𝑧}) ↔ 𝑧 ∈ (𝑂‘{𝑦}))) |
47 | 45, 46 | bitrd 280 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → (((𝑆‘𝑧)‘𝑦) = 0 ↔ 𝑧 ∈ (𝑂‘{𝑦}))) |
48 | 47 | ralbidva 3165 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 ↔ ∀𝑧 ∈ 𝑋 𝑧 ∈ (𝑂‘{𝑦}))) |
49 | 38, 48 | bitr4d 283 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑦 ∈ (𝑂‘𝑋) ↔ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 )) |
50 | 49 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝑉 ∧ 𝑦 ∈ (𝑂‘𝑋)) ↔ (𝑦 ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 ))) |
51 | 10, 50 | bitrd 280 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝑂‘𝑋) ↔ (𝑦 ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 ))) |
52 | 51 | abbi2dv 2921 | . 2 ⊢ (𝜑 → (𝑂‘𝑋) = {𝑦 ∣ (𝑦 ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 )}) |
53 | df-rab 3116 | . 2 ⊢ {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 } = {𝑦 ∣ (𝑦 ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 )} | |
54 | 52, 53 | syl6eqr 2851 | 1 ⊢ (𝜑 → (𝑂‘𝑋) = {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 {cab 2777 ∀wral 3107 {crab 3111 ⊆ wss 3865 {csn 4478 ran crn 5451 ‘cfv 6232 Basecbs 16316 Scalarcsca 16401 0gc0g 16546 LModclmod 19328 LSubSpclss 19397 LSpanclspn 19437 HLchlt 36038 LHypclh 36672 DVecHcdvh 37766 DIsoHcdih 37916 ocHcoch 38035 HDMapchdma 38480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-riotaBAD 35641 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-ot 4487 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-om 7444 df-1st 7552 df-2nd 7553 df-tpos 7750 df-undef 7797 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-map 8265 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-sca 16414 df-vsca 16415 df-0g 16548 df-mre 16690 df-mrc 16691 df-acs 16693 df-proset 17371 df-poset 17389 df-plt 17401 df-lub 17417 df-glb 17418 df-join 17419 df-meet 17420 df-p0 17482 df-p1 17483 df-lat 17489 df-clat 17551 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-submnd 17779 df-grp 17868 df-minusg 17869 df-sbg 17870 df-subg 18034 df-cntz 18192 df-oppg 18219 df-lsm 18495 df-cmn 18639 df-abl 18640 df-mgp 18934 df-ur 18946 df-ring 18993 df-oppr 19067 df-dvdsr 19085 df-unit 19086 df-invr 19116 df-dvr 19127 df-drng 19198 df-lmod 19330 df-lss 19398 df-lsp 19438 df-lvec 19569 df-lsatoms 35664 df-lshyp 35665 df-lcv 35707 df-lfl 35746 df-lkr 35774 df-ldual 35812 df-oposet 35864 df-ol 35866 df-oml 35867 df-covers 35954 df-ats 35955 df-atl 35986 df-cvlat 36010 df-hlat 36039 df-llines 36186 df-lplanes 36187 df-lvols 36188 df-lines 36189 df-psubsp 36191 df-pmap 36192 df-padd 36484 df-lhyp 36676 df-laut 36677 df-ldil 36792 df-ltrn 36793 df-trl 36847 df-tgrp 37431 df-tendo 37443 df-edring 37445 df-dveca 37691 df-disoa 37717 df-dvech 37767 df-dib 37827 df-dic 37861 df-dih 37917 df-doch 38036 df-djh 38083 df-lcdual 38275 df-mapd 38313 df-hvmap 38445 df-hdmap1 38481 df-hdmap 38482 |
This theorem is referenced by: hlhilocv 38645 |
Copyright terms: Public domain | W3C validator |