| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapoc | Structured version Visualization version GIF version | ||
| Description: Express our constructed orthocomplement (polarity) in terms of the Hilbert space definition of orthocomplement. Lines 24 and 25 in [Holland95] p. 14. (Contributed by NM, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| hdmapoc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmapoc.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmapoc.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmapoc.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hdmapoc.z | ⊢ 0 = (0g‘𝑅) |
| hdmapoc.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| hdmapoc.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmapoc.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmapoc.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
| Ref | Expression |
|---|---|
| hdmapoc | ⊢ (𝜑 → (𝑂‘𝑋) = {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmapoc.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | hdmapoc.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) | |
| 3 | hdmapoc.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | hdmapoc.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | hdmapoc.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑈) | |
| 6 | hdmapoc.o | . . . . . . . 8 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 7 | 3, 4, 5, 6 | dochssv 41464 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑂‘𝑋) ⊆ 𝑉) |
| 8 | 1, 2, 7 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑋) ⊆ 𝑉) |
| 9 | 8 | sseld 3930 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ (𝑂‘𝑋) → 𝑦 ∈ 𝑉)) |
| 10 | 9 | pm4.71rd 562 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (𝑂‘𝑋) ↔ (𝑦 ∈ 𝑉 ∧ 𝑦 ∈ (𝑂‘𝑋)))) |
| 11 | eqid 2733 | . . . . . . . . 9 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 12 | eqid 2733 | . . . . . . . . 9 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
| 13 | 3, 4, 1 | dvhlmod 41219 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 14 | 13 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → 𝑈 ∈ LMod) |
| 15 | 3, 4, 5, 11, 6 | dochlss 41463 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑂‘𝑋) ∈ (LSubSp‘𝑈)) |
| 16 | 1, 2, 15 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑂‘𝑋) ∈ (LSubSp‘𝑈)) |
| 17 | 16 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑂‘𝑋) ∈ (LSubSp‘𝑈)) |
| 18 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) | |
| 19 | 5, 11, 12, 14, 17, 18 | ellspsn5b 20938 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑦 ∈ (𝑂‘𝑋) ↔ ((LSpan‘𝑈)‘{𝑦}) ⊆ (𝑂‘𝑋))) |
| 20 | eqid 2733 | . . . . . . . . 9 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
| 21 | 1 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 22 | 3, 4, 5, 12, 20 | dihlsprn 41440 | . . . . . . . . . 10 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑦 ∈ 𝑉) → ((LSpan‘𝑈)‘{𝑦}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 23 | 21, 18, 22 | syl2anc 584 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → ((LSpan‘𝑈)‘{𝑦}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 24 | 3, 20, 4, 5, 6 | dochcl 41462 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑂‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 25 | 1, 2, 24 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑂‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 26 | 25 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑂‘𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 27 | 3, 20, 6, 21, 23, 26 | dochord 41479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (((LSpan‘𝑈)‘{𝑦}) ⊆ (𝑂‘𝑋) ↔ (𝑂‘(𝑂‘𝑋)) ⊆ (𝑂‘((LSpan‘𝑈)‘{𝑦})))) |
| 28 | 18 | snssd 4762 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → {𝑦} ⊆ 𝑉) |
| 29 | 3, 4, 6, 5, 12, 21, 28 | dochocsp 41488 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑂‘((LSpan‘𝑈)‘{𝑦})) = (𝑂‘{𝑦})) |
| 30 | 29 | sseq2d 3964 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → ((𝑂‘(𝑂‘𝑋)) ⊆ (𝑂‘((LSpan‘𝑈)‘{𝑦})) ↔ (𝑂‘(𝑂‘𝑋)) ⊆ (𝑂‘{𝑦}))) |
| 31 | 2 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → 𝑋 ⊆ 𝑉) |
| 32 | 3, 20, 4, 5, 6 | dochcl 41462 | . . . . . . . . . . 11 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑦} ⊆ 𝑉) → (𝑂‘{𝑦}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 33 | 21, 28, 32 | syl2anc 584 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑂‘{𝑦}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 34 | 3, 4, 5, 20, 6, 21, 31, 33 | dochsscl 41477 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑋 ⊆ (𝑂‘{𝑦}) ↔ (𝑂‘(𝑂‘𝑋)) ⊆ (𝑂‘{𝑦}))) |
| 35 | 30, 34 | bitr4d 282 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → ((𝑂‘(𝑂‘𝑋)) ⊆ (𝑂‘((LSpan‘𝑈)‘{𝑦})) ↔ 𝑋 ⊆ (𝑂‘{𝑦}))) |
| 36 | 19, 27, 35 | 3bitrd 305 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑦 ∈ (𝑂‘𝑋) ↔ 𝑋 ⊆ (𝑂‘{𝑦}))) |
| 37 | dfss3 3920 | . . . . . . 7 ⊢ (𝑋 ⊆ (𝑂‘{𝑦}) ↔ ∀𝑧 ∈ 𝑋 𝑧 ∈ (𝑂‘{𝑦})) | |
| 38 | 36, 37 | bitrdi 287 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑦 ∈ (𝑂‘𝑋) ↔ ∀𝑧 ∈ 𝑋 𝑧 ∈ (𝑂‘{𝑦}))) |
| 39 | hdmapoc.r | . . . . . . . . 9 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 40 | hdmapoc.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
| 41 | hdmapoc.s | . . . . . . . . 9 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 42 | 1 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 43 | 31 | sselda 3931 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑉) |
| 44 | simplr 768 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → 𝑦 ∈ 𝑉) | |
| 45 | 3, 6, 4, 5, 39, 40, 41, 42, 43, 44 | hdmapellkr 42023 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → (((𝑆‘𝑧)‘𝑦) = 0 ↔ 𝑦 ∈ (𝑂‘{𝑧}))) |
| 46 | 3, 6, 4, 5, 42, 44, 43 | dochsncom 41491 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → (𝑦 ∈ (𝑂‘{𝑧}) ↔ 𝑧 ∈ (𝑂‘{𝑦}))) |
| 47 | 45, 46 | bitrd 279 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → (((𝑆‘𝑧)‘𝑦) = 0 ↔ 𝑧 ∈ (𝑂‘{𝑦}))) |
| 48 | 47 | ralbidva 3155 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 ↔ ∀𝑧 ∈ 𝑋 𝑧 ∈ (𝑂‘{𝑦}))) |
| 49 | 38, 48 | bitr4d 282 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝑦 ∈ (𝑂‘𝑋) ↔ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 )) |
| 50 | 49 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝑉 ∧ 𝑦 ∈ (𝑂‘𝑋)) ↔ (𝑦 ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 ))) |
| 51 | 10, 50 | bitrd 279 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝑂‘𝑋) ↔ (𝑦 ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 ))) |
| 52 | 51 | eqabdv 2866 | . 2 ⊢ (𝜑 → (𝑂‘𝑋) = {𝑦 ∣ (𝑦 ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 )}) |
| 53 | df-rab 3398 | . 2 ⊢ {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 } = {𝑦 ∣ (𝑦 ∈ 𝑉 ∧ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 )} | |
| 54 | 52, 53 | eqtr4di 2786 | 1 ⊢ (𝜑 → (𝑂‘𝑋) = {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∀wral 3049 {crab 3397 ⊆ wss 3899 {csn 4577 ran crn 5622 ‘cfv 6489 Basecbs 17130 Scalarcsca 17174 0gc0g 17353 LModclmod 20803 LSubSpclss 20874 LSpanclspn 20914 HLchlt 39459 LHypclh 40093 DVecHcdvh 41187 DIsoHcdih 41337 ocHcoch 41456 HDMapchdma 41901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-undef 8212 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-0g 17355 df-mre 17498 df-mrc 17499 df-acs 17501 df-proset 18210 df-poset 18229 df-plt 18244 df-lub 18260 df-glb 18261 df-join 18262 df-meet 18263 df-p0 18339 df-p1 18340 df-lat 18348 df-clat 18415 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19046 df-cntz 19239 df-oppg 19268 df-lsm 19558 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-nzr 20438 df-rlreg 20619 df-domn 20620 df-drng 20656 df-lmod 20805 df-lss 20875 df-lsp 20915 df-lvec 21047 df-lsatoms 39085 df-lshyp 39086 df-lcv 39128 df-lfl 39167 df-lkr 39195 df-ldual 39233 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 df-tgrp 40852 df-tendo 40864 df-edring 40866 df-dveca 41112 df-disoa 41138 df-dvech 41188 df-dib 41248 df-dic 41282 df-dih 41338 df-doch 41457 df-djh 41504 df-lcdual 41696 df-mapd 41734 df-hvmap 41866 df-hdmap1 41902 df-hdmap 41903 |
| This theorem is referenced by: hlhilocv 42066 |
| Copyright terms: Public domain | W3C validator |