MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submacs Structured version   Visualization version   GIF version

Theorem submacs 18862
Description: Submonoids are an algebraic closure system. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypothesis
Ref Expression
submacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
submacs (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem submacs
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submacs.b . . . . . 6 𝐵 = (Base‘𝐺)
2 eqid 2740 . . . . . 6 (0g𝐺) = (0g𝐺)
3 eqid 2740 . . . . . 6 (+g𝐺) = (+g𝐺)
41, 2, 3issubm 18838 . . . . 5 (𝐺 ∈ Mnd → (𝑠 ∈ (SubMnd‘𝐺) ↔ (𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
5 velpw 4627 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
65anbi1i 623 . . . . . 6 ((𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)) ↔ (𝑠𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
7 3anass 1095 . . . . . 6 ((𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠) ↔ (𝑠𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
86, 7bitr4i 278 . . . . 5 ((𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)) ↔ (𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))
94, 8bitr4di 289 . . . 4 (𝐺 ∈ Mnd → (𝑠 ∈ (SubMnd‘𝐺) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))))
109eqabdv 2878 . . 3 (𝐺 ∈ Mnd → (SubMnd‘𝐺) = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))})
11 df-rab 3444 . . 3 {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))}
1210, 11eqtr4di 2798 . 2 (𝐺 ∈ Mnd → (SubMnd‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)})
13 inrab 4335 . . 3 ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) = {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)}
141fvexi 6934 . . . . 5 𝐵 ∈ V
15 mreacs 17716 . . . . 5 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
1614, 15mp1i 13 . . . 4 (𝐺 ∈ Mnd → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
171, 2mndidcl 18787 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
18 acsfn0 17718 . . . . 5 ((𝐵 ∈ V ∧ (0g𝐺) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵))
1914, 17, 18sylancr 586 . . . 4 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵))
201, 3mndcl 18780 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
21203expb 1120 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
2221ralrimivva 3208 . . . . 5 (𝐺 ∈ Mnd → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵)
23 acsfn2 17721 . . . . 5 ((𝐵 ∈ V ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
2414, 22, 23sylancr 586 . . . 4 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
25 mreincl 17657 . . . 4 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵) ∧ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) → ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) ∈ (ACS‘𝐵))
2616, 19, 24, 25syl3anc 1371 . . 3 (𝐺 ∈ Mnd → ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) ∈ (ACS‘𝐵))
2713, 26eqeltrrid 2849 . 2 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)} ∈ (ACS‘𝐵))
2812, 27eqeltrd 2844 1 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  {crab 3443  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Moorecmre 17640  ACScacs 17643  Mndcmnd 18772  SubMndcsubmnd 18817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-0g 17501  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819
This theorem is referenced by:  mndind  18863  gsumwspan  18881  subgacs  19201  symggen  19512  cntzspan  19886  gsumzsplit  19969  gsumzoppg  19986  gsumpt  20004  subrgacs  20823
  Copyright terms: Public domain W3C validator