MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submacs Structured version   Visualization version   GIF version

Theorem submacs 18651
Description: Submonoids are an algebraic closure system. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypothesis
Ref Expression
submacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
submacs (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem submacs
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submacs.b . . . . . 6 𝐵 = (Base‘𝐺)
2 eqid 2731 . . . . . 6 (0g𝐺) = (0g𝐺)
3 eqid 2731 . . . . . 6 (+g𝐺) = (+g𝐺)
41, 2, 3issubm 18628 . . . . 5 (𝐺 ∈ Mnd → (𝑠 ∈ (SubMnd‘𝐺) ↔ (𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
5 velpw 4570 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
65anbi1i 624 . . . . . 6 ((𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)) ↔ (𝑠𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
7 3anass 1095 . . . . . 6 ((𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠) ↔ (𝑠𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
86, 7bitr4i 277 . . . . 5 ((𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)) ↔ (𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))
94, 8bitr4di 288 . . . 4 (𝐺 ∈ Mnd → (𝑠 ∈ (SubMnd‘𝐺) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))))
109eqabdv 2866 . . 3 (𝐺 ∈ Mnd → (SubMnd‘𝐺) = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))})
11 df-rab 3406 . . 3 {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))}
1210, 11eqtr4di 2789 . 2 (𝐺 ∈ Mnd → (SubMnd‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)})
13 inrab 4271 . . 3 ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) = {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)}
141fvexi 6861 . . . . 5 𝐵 ∈ V
15 mreacs 17552 . . . . 5 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
1614, 15mp1i 13 . . . 4 (𝐺 ∈ Mnd → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
171, 2mndidcl 18585 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
18 acsfn0 17554 . . . . 5 ((𝐵 ∈ V ∧ (0g𝐺) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵))
1914, 17, 18sylancr 587 . . . 4 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵))
201, 3mndcl 18578 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
21203expb 1120 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
2221ralrimivva 3193 . . . . 5 (𝐺 ∈ Mnd → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵)
23 acsfn2 17557 . . . . 5 ((𝐵 ∈ V ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
2414, 22, 23sylancr 587 . . . 4 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
25 mreincl 17493 . . . 4 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵) ∧ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) → ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) ∈ (ACS‘𝐵))
2616, 19, 24, 25syl3anc 1371 . . 3 (𝐺 ∈ Mnd → ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) ∈ (ACS‘𝐵))
2713, 26eqeltrrid 2837 . 2 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)} ∈ (ACS‘𝐵))
2812, 27eqeltrd 2832 1 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2708  wral 3060  {crab 3405  Vcvv 3446  cin 3912  wss 3913  𝒫 cpw 4565  cfv 6501  (class class class)co 7362  Basecbs 17094  +gcplusg 17147  0gc0g 17335  Moorecmre 17476  ACScacs 17479  Mndcmnd 18570  SubMndcsubmnd 18614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-om 7808  df-1o 8417  df-en 8891  df-fin 8894  df-0g 17337  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616
This theorem is referenced by:  mndind  18652  gsumwspan  18670  subgacs  18977  symggen  19266  cntzspan  19636  gsumzsplit  19718  gsumzoppg  19735  gsumpt  19753  subrgacs  20323
  Copyright terms: Public domain W3C validator