MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submacs Structured version   Visualization version   GIF version

Theorem submacs 18057
Description: Submonoids are an algebraic closure system. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypothesis
Ref Expression
submacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
submacs (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem submacs
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submacs.b . . . . . 6 𝐵 = (Base‘𝐺)
2 eqid 2758 . . . . . 6 (0g𝐺) = (0g𝐺)
3 eqid 2758 . . . . . 6 (+g𝐺) = (+g𝐺)
41, 2, 3issubm 18034 . . . . 5 (𝐺 ∈ Mnd → (𝑠 ∈ (SubMnd‘𝐺) ↔ (𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
5 velpw 4499 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
65anbi1i 626 . . . . . 6 ((𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)) ↔ (𝑠𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
7 3anass 1092 . . . . . 6 ((𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠) ↔ (𝑠𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
86, 7bitr4i 281 . . . . 5 ((𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)) ↔ (𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))
94, 8bitr4di 292 . . . 4 (𝐺 ∈ Mnd → (𝑠 ∈ (SubMnd‘𝐺) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))))
109abbi2dv 2889 . . 3 (𝐺 ∈ Mnd → (SubMnd‘𝐺) = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))})
11 df-rab 3079 . . 3 {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))}
1210, 11eqtr4di 2811 . 2 (𝐺 ∈ Mnd → (SubMnd‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)})
13 inrab 4209 . . 3 ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) = {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)}
141fvexi 6672 . . . . 5 𝐵 ∈ V
15 mreacs 16987 . . . . 5 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
1614, 15mp1i 13 . . . 4 (𝐺 ∈ Mnd → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
171, 2mndidcl 17992 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
18 acsfn0 16989 . . . . 5 ((𝐵 ∈ V ∧ (0g𝐺) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵))
1914, 17, 18sylancr 590 . . . 4 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵))
201, 3mndcl 17985 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
21203expb 1117 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
2221ralrimivva 3120 . . . . 5 (𝐺 ∈ Mnd → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵)
23 acsfn2 16992 . . . . 5 ((𝐵 ∈ V ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
2414, 22, 23sylancr 590 . . . 4 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
25 mreincl 16928 . . . 4 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵) ∧ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) → ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) ∈ (ACS‘𝐵))
2616, 19, 24, 25syl3anc 1368 . . 3 (𝐺 ∈ Mnd → ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) ∈ (ACS‘𝐵))
2713, 26eqeltrrid 2857 . 2 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)} ∈ (ACS‘𝐵))
2812, 27eqeltrd 2852 1 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2735  wral 3070  {crab 3074  Vcvv 3409  cin 3857  wss 3858  𝒫 cpw 4494  cfv 6335  (class class class)co 7150  Basecbs 16541  +gcplusg 16623  0gc0g 16771  Moorecmre 16911  ACScacs 16914  Mndcmnd 17977  SubMndcsubmnd 18021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-om 7580  df-1o 8112  df-en 8528  df-fin 8531  df-0g 16773  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023
This theorem is referenced by:  mndind  18058  gsumwspan  18077  subgacs  18380  symggen  18665  cntzspan  19032  gsumzsplit  19115  gsumzoppg  19132  gsumpt  19150  subrgacs  19647
  Copyright terms: Public domain W3C validator