MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submacs Structured version   Visualization version   GIF version

Theorem submacs 18465
Description: Submonoids are an algebraic closure system. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypothesis
Ref Expression
submacs.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
submacs (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))

Proof of Theorem submacs
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submacs.b . . . . . 6 𝐵 = (Base‘𝐺)
2 eqid 2738 . . . . . 6 (0g𝐺) = (0g𝐺)
3 eqid 2738 . . . . . 6 (+g𝐺) = (+g𝐺)
41, 2, 3issubm 18442 . . . . 5 (𝐺 ∈ Mnd → (𝑠 ∈ (SubMnd‘𝐺) ↔ (𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
5 velpw 4538 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
65anbi1i 624 . . . . . 6 ((𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)) ↔ (𝑠𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
7 3anass 1094 . . . . . 6 ((𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠) ↔ (𝑠𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)))
86, 7bitr4i 277 . . . . 5 ((𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)) ↔ (𝑠𝐵 ∧ (0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))
94, 8bitr4di 289 . . . 4 (𝐺 ∈ Mnd → (𝑠 ∈ (SubMnd‘𝐺) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))))
109abbi2dv 2877 . . 3 (𝐺 ∈ Mnd → (SubMnd‘𝐺) = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))})
11 df-rab 3073 . . 3 {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)} = {𝑠 ∣ (𝑠 ∈ 𝒫 𝐵 ∧ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠))}
1210, 11eqtr4di 2796 . 2 (𝐺 ∈ Mnd → (SubMnd‘𝐺) = {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)})
13 inrab 4240 . . 3 ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) = {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)}
141fvexi 6788 . . . . 5 𝐵 ∈ V
15 mreacs 17367 . . . . 5 (𝐵 ∈ V → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
1614, 15mp1i 13 . . . 4 (𝐺 ∈ Mnd → (ACS‘𝐵) ∈ (Moore‘𝒫 𝐵))
171, 2mndidcl 18400 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
18 acsfn0 17369 . . . . 5 ((𝐵 ∈ V ∧ (0g𝐺) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵))
1914, 17, 18sylancr 587 . . . 4 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵))
201, 3mndcl 18393 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
21203expb 1119 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
2221ralrimivva 3123 . . . . 5 (𝐺 ∈ Mnd → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵)
23 acsfn2 17372 . . . . 5 ((𝐵 ∈ V ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) ∈ 𝐵) → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
2414, 22, 23sylancr 587 . . . 4 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵))
25 mreincl 17308 . . . 4 (((ACS‘𝐵) ∈ (Moore‘𝒫 𝐵) ∧ {𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∈ (ACS‘𝐵) ∧ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠} ∈ (ACS‘𝐵)) → ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) ∈ (ACS‘𝐵))
2616, 19, 24, 25syl3anc 1370 . . 3 (𝐺 ∈ Mnd → ({𝑠 ∈ 𝒫 𝐵 ∣ (0g𝐺) ∈ 𝑠} ∩ {𝑠 ∈ 𝒫 𝐵 ∣ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠}) ∈ (ACS‘𝐵))
2713, 26eqeltrrid 2844 . 2 (𝐺 ∈ Mnd → {𝑠 ∈ 𝒫 𝐵 ∣ ((0g𝐺) ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 (𝑥(+g𝐺)𝑦) ∈ 𝑠)} ∈ (ACS‘𝐵))
2812, 27eqeltrd 2839 1 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  {crab 3068  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Moorecmre 17291  ACScacs 17294  Mndcmnd 18385  SubMndcsubmnd 18429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737  df-0g 17152  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431
This theorem is referenced by:  mndind  18466  gsumwspan  18485  subgacs  18789  symggen  19078  cntzspan  19445  gsumzsplit  19528  gsumzoppg  19545  gsumpt  19563  subrgacs  20068
  Copyright terms: Public domain W3C validator