MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsub2inv Structured version   Visualization version   GIF version

Theorem ablsub2inv 19738
Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
Hypotheses
Ref Expression
ablsub2inv.b 𝐵 = (Base‘𝐺)
ablsub2inv.m = (-g𝐺)
ablsub2inv.n 𝑁 = (invg𝐺)
ablsub2inv.g (𝜑𝐺 ∈ Abel)
ablsub2inv.x (𝜑𝑋𝐵)
ablsub2inv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ablsub2inv (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = (𝑌 𝑋))

Proof of Theorem ablsub2inv
StepHypRef Expression
1 ablsub2inv.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2729 . . 3 (+g𝐺) = (+g𝐺)
3 ablsub2inv.m . . 3 = (-g𝐺)
4 ablsub2inv.n . . 3 𝑁 = (invg𝐺)
5 ablsub2inv.g . . . 4 (𝜑𝐺 ∈ Abel)
6 ablgrp 19715 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ Grp)
8 ablsub2inv.x . . . 4 (𝜑𝑋𝐵)
91, 4grpinvcl 18919 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
107, 8, 9syl2anc 584 . . 3 (𝜑 → (𝑁𝑋) ∈ 𝐵)
11 ablsub2inv.y . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 7, 10, 11grpsubinv 18944 . 2 (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = ((𝑁𝑋)(+g𝐺)𝑌))
131, 2ablcom 19729 . . . . . 6 ((𝐺 ∈ Abel ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵) → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑌(+g𝐺)(𝑁𝑋)))
145, 10, 11, 13syl3anc 1373 . . . . 5 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑌(+g𝐺)(𝑁𝑋)))
151, 4grpinvinv 18937 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
167, 11, 15syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
1716oveq1d 7402 . . . . 5 (𝜑 → ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)) = (𝑌(+g𝐺)(𝑁𝑋)))
1814, 17eqtr4d 2767 . . . 4 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
191, 4grpinvcl 18919 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
207, 11, 19syl2anc 584 . . . . 5 (𝜑 → (𝑁𝑌) ∈ 𝐵)
211, 2, 4grpinvadd 18950 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
227, 8, 20, 21syl3anc 1373 . . . 4 (𝜑 → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
2318, 22eqtr4d 2767 . . 3 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))))
241, 2, 4, 3grpsubval 18917 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)(𝑁𝑌)))
258, 11, 24syl2anc 584 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝐺)(𝑁𝑌)))
2625fveq2d 6862 . . 3 (𝜑 → (𝑁‘(𝑋 𝑌)) = (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))))
2723, 26eqtr4d 2767 . 2 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑁‘(𝑋 𝑌)))
281, 3, 4grpinvsub 18954 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
297, 8, 11, 28syl3anc 1373 . 2 (𝜑 → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
3012, 27, 293eqtrd 2768 1 (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Grpcgrp 18865  invgcminusg 18866  -gcsg 18867  Abelcabl 19711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-cmn 19712  df-abl 19713
This theorem is referenced by:  ngpinvds  24501
  Copyright terms: Public domain W3C validator