MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsub2inv Structured version   Visualization version   GIF version

Theorem ablsub2inv 19670
Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
Hypotheses
Ref Expression
ablsub2inv.b 𝐵 = (Base‘𝐺)
ablsub2inv.m = (-g𝐺)
ablsub2inv.n 𝑁 = (invg𝐺)
ablsub2inv.g (𝜑𝐺 ∈ Abel)
ablsub2inv.x (𝜑𝑋𝐵)
ablsub2inv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ablsub2inv (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = (𝑌 𝑋))

Proof of Theorem ablsub2inv
StepHypRef Expression
1 ablsub2inv.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2732 . . 3 (+g𝐺) = (+g𝐺)
3 ablsub2inv.m . . 3 = (-g𝐺)
4 ablsub2inv.n . . 3 𝑁 = (invg𝐺)
5 ablsub2inv.g . . . 4 (𝜑𝐺 ∈ Abel)
6 ablgrp 19647 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ Grp)
8 ablsub2inv.x . . . 4 (𝜑𝑋𝐵)
91, 4grpinvcl 18868 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
107, 8, 9syl2anc 584 . . 3 (𝜑 → (𝑁𝑋) ∈ 𝐵)
11 ablsub2inv.y . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 7, 10, 11grpsubinv 18892 . 2 (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = ((𝑁𝑋)(+g𝐺)𝑌))
131, 2ablcom 19661 . . . . . 6 ((𝐺 ∈ Abel ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵) → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑌(+g𝐺)(𝑁𝑋)))
145, 10, 11, 13syl3anc 1371 . . . . 5 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑌(+g𝐺)(𝑁𝑋)))
151, 4grpinvinv 18886 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
167, 11, 15syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
1716oveq1d 7420 . . . . 5 (𝜑 → ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)) = (𝑌(+g𝐺)(𝑁𝑋)))
1814, 17eqtr4d 2775 . . . 4 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
191, 4grpinvcl 18868 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
207, 11, 19syl2anc 584 . . . . 5 (𝜑 → (𝑁𝑌) ∈ 𝐵)
211, 2, 4grpinvadd 18897 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
227, 8, 20, 21syl3anc 1371 . . . 4 (𝜑 → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
2318, 22eqtr4d 2775 . . 3 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))))
241, 2, 4, 3grpsubval 18866 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)(𝑁𝑌)))
258, 11, 24syl2anc 584 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝐺)(𝑁𝑌)))
2625fveq2d 6892 . . 3 (𝜑 → (𝑁‘(𝑋 𝑌)) = (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))))
2723, 26eqtr4d 2775 . 2 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑁‘(𝑋 𝑌)))
281, 3, 4grpinvsub 18901 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
297, 8, 11, 28syl3anc 1371 . 2 (𝜑 → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
3012, 27, 293eqtrd 2776 1 (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  Grpcgrp 18815  invgcminusg 18816  -gcsg 18817  Abelcabl 19643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-cmn 19644  df-abl 19645
This theorem is referenced by:  ngpinvds  24113
  Copyright terms: Public domain W3C validator