MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsub2inv Structured version   Visualization version   GIF version

Theorem ablsub2inv 18860
Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
Hypotheses
Ref Expression
ablsub2inv.b 𝐵 = (Base‘𝐺)
ablsub2inv.m = (-g𝐺)
ablsub2inv.n 𝑁 = (invg𝐺)
ablsub2inv.g (𝜑𝐺 ∈ Abel)
ablsub2inv.x (𝜑𝑋𝐵)
ablsub2inv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ablsub2inv (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = (𝑌 𝑋))

Proof of Theorem ablsub2inv
StepHypRef Expression
1 ablsub2inv.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2818 . . 3 (+g𝐺) = (+g𝐺)
3 ablsub2inv.m . . 3 = (-g𝐺)
4 ablsub2inv.n . . 3 𝑁 = (invg𝐺)
5 ablsub2inv.g . . . 4 (𝜑𝐺 ∈ Abel)
6 ablgrp 18840 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ Grp)
8 ablsub2inv.x . . . 4 (𝜑𝑋𝐵)
91, 4grpinvcl 18089 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
107, 8, 9syl2anc 584 . . 3 (𝜑 → (𝑁𝑋) ∈ 𝐵)
11 ablsub2inv.y . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 7, 10, 11grpsubinv 18110 . 2 (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = ((𝑁𝑋)(+g𝐺)𝑌))
131, 2ablcom 18853 . . . . . 6 ((𝐺 ∈ Abel ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵) → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑌(+g𝐺)(𝑁𝑋)))
145, 10, 11, 13syl3anc 1363 . . . . 5 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑌(+g𝐺)(𝑁𝑋)))
151, 4grpinvinv 18104 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
167, 11, 15syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
1716oveq1d 7160 . . . . 5 (𝜑 → ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)) = (𝑌(+g𝐺)(𝑁𝑋)))
1814, 17eqtr4d 2856 . . . 4 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
191, 4grpinvcl 18089 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
207, 11, 19syl2anc 584 . . . . 5 (𝜑 → (𝑁𝑌) ∈ 𝐵)
211, 2, 4grpinvadd 18115 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
227, 8, 20, 21syl3anc 1363 . . . 4 (𝜑 → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
2318, 22eqtr4d 2856 . . 3 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))))
241, 2, 4, 3grpsubval 18087 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)(𝑁𝑌)))
258, 11, 24syl2anc 584 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝐺)(𝑁𝑌)))
2625fveq2d 6667 . . 3 (𝜑 → (𝑁‘(𝑋 𝑌)) = (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))))
2723, 26eqtr4d 2856 . 2 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑁‘(𝑋 𝑌)))
281, 3, 4grpinvsub 18119 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
297, 8, 11, 28syl3anc 1363 . 2 (𝜑 → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
3012, 27, 293eqtrd 2857 1 (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  Grpcgrp 18041  invgcminusg 18042  -gcsg 18043  Abelcabl 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-cmn 18837  df-abl 18838
This theorem is referenced by:  ngpinvds  23149
  Copyright terms: Public domain W3C validator