MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsub2inv Structured version   Visualization version   GIF version

Theorem ablsub2inv 19765
Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
Hypotheses
Ref Expression
ablsub2inv.b 𝐵 = (Base‘𝐺)
ablsub2inv.m = (-g𝐺)
ablsub2inv.n 𝑁 = (invg𝐺)
ablsub2inv.g (𝜑𝐺 ∈ Abel)
ablsub2inv.x (𝜑𝑋𝐵)
ablsub2inv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ablsub2inv (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = (𝑌 𝑋))

Proof of Theorem ablsub2inv
StepHypRef Expression
1 ablsub2inv.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2725 . . 3 (+g𝐺) = (+g𝐺)
3 ablsub2inv.m . . 3 = (-g𝐺)
4 ablsub2inv.n . . 3 𝑁 = (invg𝐺)
5 ablsub2inv.g . . . 4 (𝜑𝐺 ∈ Abel)
6 ablgrp 19742 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ Grp)
8 ablsub2inv.x . . . 4 (𝜑𝑋𝐵)
91, 4grpinvcl 18946 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
107, 8, 9syl2anc 582 . . 3 (𝜑 → (𝑁𝑋) ∈ 𝐵)
11 ablsub2inv.y . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 7, 10, 11grpsubinv 18970 . 2 (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = ((𝑁𝑋)(+g𝐺)𝑌))
131, 2ablcom 19756 . . . . . 6 ((𝐺 ∈ Abel ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵) → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑌(+g𝐺)(𝑁𝑋)))
145, 10, 11, 13syl3anc 1368 . . . . 5 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑌(+g𝐺)(𝑁𝑋)))
151, 4grpinvinv 18964 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
167, 11, 15syl2anc 582 . . . . . 6 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
1716oveq1d 7430 . . . . 5 (𝜑 → ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)) = (𝑌(+g𝐺)(𝑁𝑋)))
1814, 17eqtr4d 2768 . . . 4 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
191, 4grpinvcl 18946 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
207, 11, 19syl2anc 582 . . . . 5 (𝜑 → (𝑁𝑌) ∈ 𝐵)
211, 2, 4grpinvadd 18976 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
227, 8, 20, 21syl3anc 1368 . . . 4 (𝜑 → (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))) = ((𝑁‘(𝑁𝑌))(+g𝐺)(𝑁𝑋)))
2318, 22eqtr4d 2768 . . 3 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))))
241, 2, 4, 3grpsubval 18944 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)(𝑁𝑌)))
258, 11, 24syl2anc 582 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝐺)(𝑁𝑌)))
2625fveq2d 6895 . . 3 (𝜑 → (𝑁‘(𝑋 𝑌)) = (𝑁‘(𝑋(+g𝐺)(𝑁𝑌))))
2723, 26eqtr4d 2768 . 2 (𝜑 → ((𝑁𝑋)(+g𝐺)𝑌) = (𝑁‘(𝑋 𝑌)))
281, 3, 4grpinvsub 18980 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
297, 8, 11, 28syl3anc 1368 . 2 (𝜑 → (𝑁‘(𝑋 𝑌)) = (𝑌 𝑋))
3012, 27, 293eqtrd 2769 1 (𝜑 → ((𝑁𝑋) (𝑁𝑌)) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6542  (class class class)co 7415  Basecbs 17177  +gcplusg 17230  Grpcgrp 18892  invgcminusg 18893  -gcsg 18894  Abelcabl 19738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7989  df-2nd 7990  df-0g 17420  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-grp 18895  df-minusg 18896  df-sbg 18897  df-cmn 19739  df-abl 19740
This theorem is referenced by:  ngpinvds  24538
  Copyright terms: Public domain W3C validator