| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablsub2inv | Structured version Visualization version GIF version | ||
| Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.) |
| Ref | Expression |
|---|---|
| ablsub2inv.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablsub2inv.m | ⊢ − = (-g‘𝐺) |
| ablsub2inv.n | ⊢ 𝑁 = (invg‘𝐺) |
| ablsub2inv.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablsub2inv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablsub2inv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ablsub2inv | ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = (𝑌 − 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsub2inv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | ablsub2inv.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 4 | ablsub2inv.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 5 | ablsub2inv.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 6 | ablgrp 19682 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 8 | ablsub2inv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | 1, 4 | grpinvcl 18884 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 10 | 7, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
| 11 | ablsub2inv.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | 1, 2, 3, 4, 7, 10, 11 | grpsubinv 18909 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = ((𝑁‘𝑋)(+g‘𝐺)𝑌)) |
| 13 | 1, 2 | ablcom 19696 | . . . . . 6 ⊢ ((𝐺 ∈ Abel ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑌(+g‘𝐺)(𝑁‘𝑋))) |
| 14 | 5, 10, 11, 13 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑌(+g‘𝐺)(𝑁‘𝑋))) |
| 15 | 1, 4 | grpinvinv 18902 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
| 16 | 7, 11, 15 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
| 17 | 16 | oveq1d 7368 | . . . . 5 ⊢ (𝜑 → ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋)) = (𝑌(+g‘𝐺)(𝑁‘𝑋))) |
| 18 | 14, 17 | eqtr4d 2767 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋))) |
| 19 | 1, 4 | grpinvcl 18884 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
| 20 | 7, 11, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
| 21 | 1, 2, 4 | grpinvadd 18915 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌))) = ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋))) |
| 22 | 7, 8, 20, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌))) = ((𝑁‘(𝑁‘𝑌))(+g‘𝐺)(𝑁‘𝑋))) |
| 23 | 18, 22 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌)))) |
| 24 | 1, 2, 4, 3 | grpsubval 18882 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)(𝑁‘𝑌))) |
| 25 | 8, 11, 24 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)(𝑁‘𝑌))) |
| 26 | 25 | fveq2d 6830 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑋 − 𝑌)) = (𝑁‘(𝑋(+g‘𝐺)(𝑁‘𝑌)))) |
| 27 | 23, 26 | eqtr4d 2767 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋)(+g‘𝐺)𝑌) = (𝑁‘(𝑋 − 𝑌))) |
| 28 | 1, 3, 4 | grpinvsub 18919 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 − 𝑌)) = (𝑌 − 𝑋)) |
| 29 | 7, 8, 11, 28 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 − 𝑌)) = (𝑌 − 𝑋)) |
| 30 | 12, 27, 29 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = (𝑌 − 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Grpcgrp 18830 invgcminusg 18831 -gcsg 18832 Abelcabl 19678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-cmn 19679 df-abl 19680 |
| This theorem is referenced by: ngpinvds 24517 |
| Copyright terms: Public domain | W3C validator |