MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pid Structured version   Visualization version   GIF version

Theorem r1pid 25314
Description: Express the original polynomial 𝐹 as 𝐹 = (𝑞 · 𝐺) + 𝑟 using the quotient and remainder functions for 𝑞 and 𝑟. (Contributed by Mario Carneiro, 5-Jun-2015.)
Hypotheses
Ref Expression
r1pid.p 𝑃 = (Poly1𝑅)
r1pid.b 𝐵 = (Base‘𝑃)
r1pid.c 𝐶 = (Unic1p𝑅)
r1pid.q 𝑄 = (quot1p𝑅)
r1pid.e 𝐸 = (rem1p𝑅)
r1pid.t · = (.r𝑃)
r1pid.m + = (+g𝑃)
Assertion
Ref Expression
r1pid ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹 = (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺)))

Proof of Theorem r1pid
StepHypRef Expression
1 r1pid.p . . . . . 6 𝑃 = (Poly1𝑅)
2 r1pid.b . . . . . 6 𝐵 = (Base‘𝑃)
3 r1pid.c . . . . . 6 𝐶 = (Unic1p𝑅)
41, 2, 3uc1pcl 25298 . . . . 5 (𝐺𝐶𝐺𝐵)
5 r1pid.e . . . . . 6 𝐸 = (rem1p𝑅)
6 r1pid.q . . . . . 6 𝑄 = (quot1p𝑅)
7 r1pid.t . . . . . 6 · = (.r𝑃)
8 eqid 2740 . . . . . 6 (-g𝑃) = (-g𝑃)
95, 1, 2, 6, 7, 8r1pval 25311 . . . . 5 ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)))
104, 9sylan2 593 . . . 4 ((𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)))
11103adant1 1129 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)))
1211oveq2d 7285 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺)) = (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺))))
131ply1ring 21409 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
14133ad2ant1 1132 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑃 ∈ Ring)
15 ringabl 19809 . . . 4 (𝑃 ∈ Ring → 𝑃 ∈ Abel)
1614, 15syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑃 ∈ Abel)
176, 1, 2, 3q1pcl 25310 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) ∈ 𝐵)
1843ad2ant3 1134 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
192, 7ringcl 19790 . . . 4 ((𝑃 ∈ Ring ∧ (𝐹𝑄𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵)
2014, 17, 18, 19syl3anc 1370 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵)
21 ringgrp 19778 . . . . 5 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
2214, 21syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑃 ∈ Grp)
23 simp2 1136 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹𝐵)
242, 8grpsubcl 18645 . . . 4 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) → (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵)
2522, 23, 20, 24syl3anc 1370 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵)
26 r1pid.m . . . 4 + = (+g𝑃)
272, 26ablcom 19394 . . 3 ((𝑃 ∈ Abel ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵 ∧ (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺))) = ((𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)))
2816, 20, 25, 27syl3anc 1370 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺))) = ((𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)))
292, 26, 8grpnpcan 18657 . . 3 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) → ((𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)) = 𝐹)
3022, 23, 20, 29syl3anc 1370 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)) = 𝐹)
3112, 28, 303eqtrrd 2785 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹 = (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1542  wcel 2110  cfv 6431  (class class class)co 7269  Basecbs 16902  +gcplusg 16952  .rcmulr 16953  Grpcgrp 18567  -gcsg 18569  Abelcabl 19377  Ringcrg 19773  Poly1cpl1 21338  Unic1pcuc1p 25281  quot1pcq1p 25282  rem1pcr1p 25283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941  ax-pre-sup 10942  ax-addf 10943  ax-mulf 10944
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-ofr 7526  df-om 7702  df-1st 7818  df-2nd 7819  df-supp 7963  df-tpos 8027  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-1o 8282  df-er 8473  df-map 8592  df-pm 8593  df-ixp 8661  df-en 8709  df-dom 8710  df-sdom 8711  df-fin 8712  df-fsupp 9099  df-sup 9171  df-oi 9239  df-card 9690  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-nn 11966  df-2 12028  df-3 12029  df-4 12030  df-5 12031  df-6 12032  df-7 12033  df-8 12034  df-9 12035  df-n0 12226  df-z 12312  df-dec 12429  df-uz 12574  df-fz 13231  df-fzo 13374  df-seq 13712  df-hash 14035  df-struct 16838  df-sets 16855  df-slot 16873  df-ndx 16885  df-base 16903  df-ress 16932  df-plusg 16965  df-mulr 16966  df-starv 16967  df-sca 16968  df-vsca 16969  df-tset 16971  df-ple 16972  df-ds 16974  df-unif 16975  df-0g 17142  df-gsum 17143  df-mre 17285  df-mrc 17286  df-acs 17288  df-mgm 18316  df-sgrp 18365  df-mnd 18376  df-mhm 18420  df-submnd 18421  df-grp 18570  df-minusg 18571  df-sbg 18572  df-mulg 18691  df-subg 18742  df-ghm 18822  df-cntz 18913  df-cmn 19378  df-abl 19379  df-mgp 19711  df-ur 19728  df-ring 19775  df-cring 19776  df-oppr 19852  df-dvdsr 19873  df-unit 19874  df-invr 19904  df-subrg 20012  df-lmod 20115  df-lss 20184  df-rlreg 20544  df-cnfld 20588  df-psr 21102  df-mvr 21103  df-mpl 21104  df-opsr 21106  df-psr1 21341  df-vr1 21342  df-ply1 21343  df-coe1 21344  df-mdeg 25207  df-deg1 25208  df-uc1p 25286  df-q1p 25287  df-r1p 25288
This theorem is referenced by:  ply1rem  25318
  Copyright terms: Public domain W3C validator