![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1pid | Structured version Visualization version GIF version |
Description: Express the original polynomial 𝐹 as 𝐹 = (𝑞 · 𝐺) + 𝑟 using the quotient and remainder functions for 𝑞 and 𝑟. (Contributed by Mario Carneiro, 5-Jun-2015.) |
Ref | Expression |
---|---|
r1pid.p | ⊢ 𝑃 = (Poly1‘𝑅) |
r1pid.b | ⊢ 𝐵 = (Base‘𝑃) |
r1pid.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
r1pid.q | ⊢ 𝑄 = (quot1p‘𝑅) |
r1pid.e | ⊢ 𝐸 = (rem1p‘𝑅) |
r1pid.t | ⊢ · = (.r‘𝑃) |
r1pid.m | ⊢ + = (+g‘𝑃) |
Ref | Expression |
---|---|
r1pid | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 = (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1pid.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | r1pid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
3 | r1pid.c | . . . . . 6 ⊢ 𝐶 = (Unic1p‘𝑅) | |
4 | 1, 2, 3 | uc1pcl 24241 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
5 | r1pid.e | . . . . . 6 ⊢ 𝐸 = (rem1p‘𝑅) | |
6 | r1pid.q | . . . . . 6 ⊢ 𝑄 = (quot1p‘𝑅) | |
7 | r1pid.t | . . . . . 6 ⊢ · = (.r‘𝑃) | |
8 | eqid 2797 | . . . . . 6 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
9 | 5, 1, 2, 6, 7, 8 | r1pval 24254 | . . . . 5 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) |
10 | 4, 9 | sylan2 587 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) |
11 | 10 | 3adant1 1161 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) |
12 | 11 | oveq2d 6892 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺)) = (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)))) |
13 | 1 | ply1ring 19937 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
14 | 13 | 3ad2ant1 1164 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Ring) |
15 | ringabl 18893 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Abel) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Abel) |
17 | 6, 1, 2, 3 | q1pcl 24253 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) ∈ 𝐵) |
18 | 4 | 3ad2ant3 1166 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
19 | 2, 7 | ringcl 18874 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ (𝐹𝑄𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) |
20 | 14, 17, 18, 19 | syl3anc 1491 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) |
21 | ringgrp 18865 | . . . . 5 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
22 | 14, 21 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Grp) |
23 | simp2 1168 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
24 | 2, 8 | grpsubcl 17808 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) → (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵) |
25 | 22, 23, 20, 24 | syl3anc 1491 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵) |
26 | r1pid.m | . . . 4 ⊢ + = (+g‘𝑃) | |
27 | 2, 26 | ablcom 18522 | . . 3 ⊢ ((𝑃 ∈ Abel ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵 ∧ (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) = ((𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺))) |
28 | 16, 20, 25, 27 | syl3anc 1491 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) = ((𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺))) |
29 | 2, 26, 8 | grpnpcan 17820 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) → ((𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)) = 𝐹) |
30 | 22, 23, 20, 29 | syl3anc 1491 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)) = 𝐹) |
31 | 12, 28, 30 | 3eqtrrd 2836 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 = (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ‘cfv 6099 (class class class)co 6876 Basecbs 16181 +gcplusg 16264 .rcmulr 16265 Grpcgrp 17735 -gcsg 17737 Abelcabl 18506 Ringcrg 18860 Poly1cpl1 19866 Unic1pcuc1p 24224 quot1pcq1p 24225 rem1pcr1p 24226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 ax-addf 10301 ax-mulf 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 df-ofr 7130 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-tpos 7588 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-2o 7798 df-oadd 7801 df-er 7980 df-map 8095 df-pm 8096 df-ixp 8147 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-sup 8588 df-oi 8655 df-card 9049 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-fzo 12717 df-seq 13052 df-hash 13367 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-starv 16279 df-sca 16280 df-vsca 16281 df-tset 16283 df-ple 16284 df-ds 16286 df-unif 16287 df-0g 16414 df-gsum 16415 df-mre 16558 df-mrc 16559 df-acs 16561 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-mhm 17647 df-submnd 17648 df-grp 17738 df-minusg 17739 df-sbg 17740 df-mulg 17854 df-subg 17901 df-ghm 17968 df-cntz 18059 df-cmn 18507 df-abl 18508 df-mgp 18803 df-ur 18815 df-ring 18862 df-cring 18863 df-oppr 18936 df-dvdsr 18954 df-unit 18955 df-invr 18985 df-subrg 19093 df-lmod 19180 df-lss 19248 df-rlreg 19603 df-psr 19676 df-mvr 19677 df-mpl 19678 df-opsr 19680 df-psr1 19869 df-vr1 19870 df-ply1 19871 df-coe1 19872 df-cnfld 20066 df-mdeg 24153 df-deg1 24154 df-uc1p 24229 df-q1p 24230 df-r1p 24231 |
This theorem is referenced by: ply1rem 24261 |
Copyright terms: Public domain | W3C validator |