| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1pid | Structured version Visualization version GIF version | ||
| Description: Express the original polynomial 𝐹 as 𝐹 = (𝑞 · 𝐺) + 𝑟 using the quotient and remainder functions for 𝑞 and 𝑟. (Contributed by Mario Carneiro, 5-Jun-2015.) |
| Ref | Expression |
|---|---|
| r1pid.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| r1pid.b | ⊢ 𝐵 = (Base‘𝑃) |
| r1pid.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
| r1pid.q | ⊢ 𝑄 = (quot1p‘𝑅) |
| r1pid.e | ⊢ 𝐸 = (rem1p‘𝑅) |
| r1pid.t | ⊢ · = (.r‘𝑃) |
| r1pid.m | ⊢ + = (+g‘𝑃) |
| Ref | Expression |
|---|---|
| r1pid | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 = (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1pid.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | r1pid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | r1pid.c | . . . . . 6 ⊢ 𝐶 = (Unic1p‘𝑅) | |
| 4 | 1, 2, 3 | uc1pcl 26074 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
| 5 | r1pid.e | . . . . . 6 ⊢ 𝐸 = (rem1p‘𝑅) | |
| 6 | r1pid.q | . . . . . 6 ⊢ 𝑄 = (quot1p‘𝑅) | |
| 7 | r1pid.t | . . . . . 6 ⊢ · = (.r‘𝑃) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 9 | 5, 1, 2, 6, 7, 8 | r1pval 26088 | . . . . 5 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) |
| 10 | 4, 9 | sylan2 593 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) |
| 11 | 10 | 3adant1 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) |
| 12 | 11 | oveq2d 7362 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺)) = (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)))) |
| 13 | 1 | ply1ring 22158 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 14 | 13 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Ring) |
| 15 | ringabl 20197 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Abel) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Abel) |
| 17 | 6, 1, 2, 3 | q1pcl 26087 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) ∈ 𝐵) |
| 18 | 4 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
| 19 | 2, 7 | ringcl 20166 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ (𝐹𝑄𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) |
| 20 | 14, 17, 18, 19 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) |
| 21 | ringgrp 20154 | . . . . 5 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
| 22 | 14, 21 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Grp) |
| 23 | simp2 1137 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
| 24 | 2, 8 | grpsubcl 18930 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) → (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵) |
| 25 | 22, 23, 20, 24 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵) |
| 26 | r1pid.m | . . . 4 ⊢ + = (+g‘𝑃) | |
| 27 | 2, 26 | ablcom 19709 | . . 3 ⊢ ((𝑃 ∈ Abel ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵 ∧ (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) = ((𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺))) |
| 28 | 16, 20, 25, 27 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) = ((𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺))) |
| 29 | 2, 26, 8 | grpnpcan 18942 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) → ((𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)) = 𝐹) |
| 30 | 22, 23, 20, 29 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)) = 𝐹) |
| 31 | 12, 28, 30 | 3eqtrrd 2771 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 = (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 .rcmulr 17159 Grpcgrp 18843 -gcsg 18845 Abelcabl 19691 Ringcrg 20149 Poly1cpl1 22087 Unic1pcuc1p 26057 quot1pcq1p 26058 rem1pcr1p 26059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-0g 17342 df-gsum 17343 df-prds 17348 df-pws 17350 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-ghm 19123 df-cntz 19227 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-subrng 20459 df-subrg 20483 df-rlreg 20607 df-lmod 20793 df-lss 20863 df-cnfld 21290 df-psr 21844 df-mvr 21845 df-mpl 21846 df-opsr 21848 df-psr1 22090 df-vr1 22091 df-ply1 22092 df-coe1 22093 df-mdeg 25985 df-deg1 25986 df-uc1p 26062 df-q1p 26063 df-r1p 26064 |
| This theorem is referenced by: r1pid2 26092 ply1rem 26096 r1pid2OLD 33564 irredminply 33724 |
| Copyright terms: Public domain | W3C validator |