![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1pid | Structured version Visualization version GIF version |
Description: Express the original polynomial 𝐹 as 𝐹 = (𝑞 · 𝐺) + 𝑟 using the quotient and remainder functions for 𝑞 and 𝑟. (Contributed by Mario Carneiro, 5-Jun-2015.) |
Ref | Expression |
---|---|
r1pid.p | ⊢ 𝑃 = (Poly1‘𝑅) |
r1pid.b | ⊢ 𝐵 = (Base‘𝑃) |
r1pid.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
r1pid.q | ⊢ 𝑄 = (quot1p‘𝑅) |
r1pid.e | ⊢ 𝐸 = (rem1p‘𝑅) |
r1pid.t | ⊢ · = (.r‘𝑃) |
r1pid.m | ⊢ + = (+g‘𝑃) |
Ref | Expression |
---|---|
r1pid | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 = (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1pid.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | r1pid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
3 | r1pid.c | . . . . . 6 ⊢ 𝐶 = (Unic1p‘𝑅) | |
4 | 1, 2, 3 | uc1pcl 26072 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
5 | r1pid.e | . . . . . 6 ⊢ 𝐸 = (rem1p‘𝑅) | |
6 | r1pid.q | . . . . . 6 ⊢ 𝑄 = (quot1p‘𝑅) | |
7 | r1pid.t | . . . . . 6 ⊢ · = (.r‘𝑃) | |
8 | eqid 2727 | . . . . . 6 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
9 | 5, 1, 2, 6, 7, 8 | r1pval 26086 | . . . . 5 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) |
10 | 4, 9 | sylan2 592 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) |
11 | 10 | 3adant1 1128 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) |
12 | 11 | oveq2d 7430 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺)) = (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)))) |
13 | 1 | ply1ring 22159 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
14 | 13 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Ring) |
15 | ringabl 20210 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Abel) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Abel) |
17 | 6, 1, 2, 3 | q1pcl 26085 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) ∈ 𝐵) |
18 | 4 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
19 | 2, 7 | ringcl 20183 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ (𝐹𝑄𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) |
20 | 14, 17, 18, 19 | syl3anc 1369 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) |
21 | ringgrp 20171 | . . . . 5 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
22 | 14, 21 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Grp) |
23 | simp2 1135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
24 | 2, 8 | grpsubcl 18969 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) → (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵) |
25 | 22, 23, 20, 24 | syl3anc 1369 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵) |
26 | r1pid.m | . . . 4 ⊢ + = (+g‘𝑃) | |
27 | 2, 26 | ablcom 19747 | . . 3 ⊢ ((𝑃 ∈ Abel ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵 ∧ (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) = ((𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺))) |
28 | 16, 20, 25, 27 | syl3anc 1369 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺))) = ((𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺))) |
29 | 2, 26, 8 | grpnpcan 18981 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) → ((𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)) = 𝐹) |
30 | 22, 23, 20, 29 | syl3anc 1369 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹(-g‘𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)) = 𝐹) |
31 | 12, 28, 30 | 3eqtrrd 2772 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 = (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 +gcplusg 17226 .rcmulr 17227 Grpcgrp 18883 -gcsg 18885 Abelcabl 19729 Ringcrg 20166 Poly1cpl1 22089 Unic1pcuc1p 26055 quot1pcq1p 26056 rem1pcr1p 26057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-ofr 7680 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-0g 17416 df-gsum 17417 df-prds 17422 df-pws 17424 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mhm 18733 df-submnd 18734 df-grp 18886 df-minusg 18887 df-sbg 18888 df-mulg 19017 df-subg 19071 df-ghm 19161 df-cntz 19261 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-cring 20169 df-oppr 20266 df-dvdsr 20289 df-unit 20290 df-invr 20320 df-subrng 20476 df-subrg 20501 df-lmod 20738 df-lss 20809 df-rlreg 21223 df-cnfld 21273 df-psr 21835 df-mvr 21836 df-mpl 21837 df-opsr 21839 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 df-mdeg 25981 df-deg1 25982 df-uc1p 26060 df-q1p 26061 df-r1p 26062 |
This theorem is referenced by: ply1rem 26093 r1pid2 33265 irredminply 33374 |
Copyright terms: Public domain | W3C validator |