MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pid Structured version   Visualization version   GIF version

Theorem r1pid 24257
Description: Express the original polynomial 𝐹 as 𝐹 = (𝑞 · 𝐺) + 𝑟 using the quotient and remainder functions for 𝑞 and 𝑟. (Contributed by Mario Carneiro, 5-Jun-2015.)
Hypotheses
Ref Expression
r1pid.p 𝑃 = (Poly1𝑅)
r1pid.b 𝐵 = (Base‘𝑃)
r1pid.c 𝐶 = (Unic1p𝑅)
r1pid.q 𝑄 = (quot1p𝑅)
r1pid.e 𝐸 = (rem1p𝑅)
r1pid.t · = (.r𝑃)
r1pid.m + = (+g𝑃)
Assertion
Ref Expression
r1pid ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹 = (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺)))

Proof of Theorem r1pid
StepHypRef Expression
1 r1pid.p . . . . . 6 𝑃 = (Poly1𝑅)
2 r1pid.b . . . . . 6 𝐵 = (Base‘𝑃)
3 r1pid.c . . . . . 6 𝐶 = (Unic1p𝑅)
41, 2, 3uc1pcl 24241 . . . . 5 (𝐺𝐶𝐺𝐵)
5 r1pid.e . . . . . 6 𝐸 = (rem1p𝑅)
6 r1pid.q . . . . . 6 𝑄 = (quot1p𝑅)
7 r1pid.t . . . . . 6 · = (.r𝑃)
8 eqid 2797 . . . . . 6 (-g𝑃) = (-g𝑃)
95, 1, 2, 6, 7, 8r1pval 24254 . . . . 5 ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)))
104, 9sylan2 587 . . . 4 ((𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)))
11103adant1 1161 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)))
1211oveq2d 6892 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺)) = (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺))))
131ply1ring 19937 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
14133ad2ant1 1164 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑃 ∈ Ring)
15 ringabl 18893 . . . 4 (𝑃 ∈ Ring → 𝑃 ∈ Abel)
1614, 15syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑃 ∈ Abel)
176, 1, 2, 3q1pcl 24253 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) ∈ 𝐵)
1843ad2ant3 1166 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
192, 7ringcl 18874 . . . 4 ((𝑃 ∈ Ring ∧ (𝐹𝑄𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵)
2014, 17, 18, 19syl3anc 1491 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵)
21 ringgrp 18865 . . . . 5 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
2214, 21syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑃 ∈ Grp)
23 simp2 1168 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹𝐵)
242, 8grpsubcl 17808 . . . 4 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) → (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵)
2522, 23, 20, 24syl3anc 1491 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵)
26 r1pid.m . . . 4 + = (+g𝑃)
272, 26ablcom 18522 . . 3 ((𝑃 ∈ Abel ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵 ∧ (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) ∈ 𝐵) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺))) = ((𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)))
2816, 20, 25, 27syl3anc 1491 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (((𝐹𝑄𝐺) · 𝐺) + (𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺))) = ((𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)))
292, 26, 8grpnpcan 17820 . . 3 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ((𝐹𝑄𝐺) · 𝐺) ∈ 𝐵) → ((𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)) = 𝐹)
3022, 23, 20, 29syl3anc 1491 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹(-g𝑃)((𝐹𝑄𝐺) · 𝐺)) + ((𝐹𝑄𝐺) · 𝐺)) = 𝐹)
3112, 28, 303eqtrrd 2836 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹 = (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1108   = wceq 1653  wcel 2157  cfv 6099  (class class class)co 6876  Basecbs 16181  +gcplusg 16264  .rcmulr 16265  Grpcgrp 17735  -gcsg 17737  Abelcabl 18506  Ringcrg 18860  Poly1cpl1 19866  Unic1pcuc1p 24224  quot1pcq1p 24225  rem1pcr1p 24226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300  ax-addf 10301  ax-mulf 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-of 7129  df-ofr 7130  df-om 7298  df-1st 7399  df-2nd 7400  df-supp 7531  df-tpos 7588  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-2o 7798  df-oadd 7801  df-er 7980  df-map 8095  df-pm 8096  df-ixp 8147  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fsupp 8516  df-sup 8588  df-oi 8655  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-dec 11780  df-uz 11927  df-fz 12577  df-fzo 12717  df-seq 13052  df-hash 13367  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-starv 16279  df-sca 16280  df-vsca 16281  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-0g 16414  df-gsum 16415  df-mre 16558  df-mrc 16559  df-acs 16561  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-mhm 17647  df-submnd 17648  df-grp 17738  df-minusg 17739  df-sbg 17740  df-mulg 17854  df-subg 17901  df-ghm 17968  df-cntz 18059  df-cmn 18507  df-abl 18508  df-mgp 18803  df-ur 18815  df-ring 18862  df-cring 18863  df-oppr 18936  df-dvdsr 18954  df-unit 18955  df-invr 18985  df-subrg 19093  df-lmod 19180  df-lss 19248  df-rlreg 19603  df-psr 19676  df-mvr 19677  df-mpl 19678  df-opsr 19680  df-psr1 19869  df-vr1 19870  df-ply1 19871  df-coe1 19872  df-cnfld 20066  df-mdeg 24153  df-deg1 24154  df-uc1p 24229  df-q1p 24230  df-r1p 24231
This theorem is referenced by:  ply1rem  24261
  Copyright terms: Public domain W3C validator