| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablsubadd | Structured version Visualization version GIF version | ||
| Description: Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablsubadd.p | ⊢ + = (+g‘𝐺) |
| ablsubadd.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| ablsubadd | ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑌 + 𝑍) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablgrp 19707 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 2 | ablsubadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 4 | ablsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 5 | 2, 3, 4 | grpsubadd 18951 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋)) |
| 6 | 1, 5 | sylan 580 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋)) |
| 7 | 2, 3 | ablcom 19721 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 + 𝑍) = (𝑍 + 𝑌)) |
| 8 | 7 | 3adant3r1 1183 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 + 𝑍) = (𝑍 + 𝑌)) |
| 9 | 8 | eqeq1d 2735 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 + 𝑍) = 𝑋 ↔ (𝑍 + 𝑌) = 𝑋)) |
| 10 | 6, 9 | bitr4d 282 | 1 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑌 + 𝑍) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 Grpcgrp 18856 -gcsg 18858 Abelcabl 19703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-minusg 18860 df-sbg 18861 df-cmn 19704 df-abl 19705 |
| This theorem is referenced by: lmodvsubadd 20856 |
| Copyright terms: Public domain | W3C validator |