Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladdcom Structured version   Visualization version   GIF version

Theorem lfladdcom 36210
Description: Commutativity of functional addition. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfladdcl.r 𝑅 = (Scalar‘𝑊)
lfladdcl.p + = (+g𝑅)
lfladdcl.f 𝐹 = (LFnl‘𝑊)
lfladdcl.w (𝜑𝑊 ∈ LMod)
lfladdcl.g (𝜑𝐺𝐹)
lfladdcl.h (𝜑𝐻𝐹)
Assertion
Ref Expression
lfladdcom (𝜑 → (𝐺f + 𝐻) = (𝐻f + 𝐺))

Proof of Theorem lfladdcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6687 . 2 (𝜑 → (Base‘𝑊) ∈ V)
2 lfladdcl.w . . 3 (𝜑𝑊 ∈ LMod)
3 lfladdcl.g . . 3 (𝜑𝐺𝐹)
4 lfladdcl.r . . . 4 𝑅 = (Scalar‘𝑊)
5 eqid 2823 . . . 4 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2823 . . . 4 (Base‘𝑊) = (Base‘𝑊)
7 lfladdcl.f . . . 4 𝐹 = (LFnl‘𝑊)
84, 5, 6, 7lflf 36201 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:(Base‘𝑊)⟶(Base‘𝑅))
92, 3, 8syl2anc 586 . 2 (𝜑𝐺:(Base‘𝑊)⟶(Base‘𝑅))
10 lfladdcl.h . . 3 (𝜑𝐻𝐹)
114, 5, 6, 7lflf 36201 . . 3 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → 𝐻:(Base‘𝑊)⟶(Base‘𝑅))
122, 10, 11syl2anc 586 . 2 (𝜑𝐻:(Base‘𝑊)⟶(Base‘𝑅))
134lmodring 19644 . . . . 5 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
14 ringabl 19332 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
152, 13, 143syl 18 . . . 4 (𝜑𝑅 ∈ Abel)
1615adantr 483 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑅 ∈ Abel)
17 simprl 769 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
18 simprr 771 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
19 lfladdcl.p . . . 4 + = (+g𝑅)
205, 19ablcom 18926 . . 3 ((𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
2116, 17, 18, 20syl3anc 1367 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
221, 9, 12, 21caofcom 7443 1 (𝜑 → (𝐺f + 𝐻) = (𝐻f + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  Basecbs 16485  +gcplusg 16567  Scalarcsca 16570  Abelcabl 18909  Ringcrg 19299  LModclmod 19636  LFnlclfn 36195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638  df-lfl 36196
This theorem is referenced by:  ldualvaddcom  36278
  Copyright terms: Public domain W3C validator