MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abladdsub Structured version   Visualization version   GIF version

Theorem abladdsub 19854
Description: Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
abladdsub ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 𝑍) + 𝑌))

Proof of Theorem abladdsub
StepHypRef Expression
1 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
2 ablsubadd.p . . . . 5 + = (+g𝐺)
31, 2ablcom 19841 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
433adant3r3 1184 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
54oveq1d 7463 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑌 + 𝑋) 𝑍))
6 ablgrp 19827 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
76adantr 480 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
8 simpr2 1195 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
9 simpr1 1194 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
10 simpr3 1196 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
11 ablsubadd.m . . . 4 = (-g𝐺)
121, 2, 11grpaddsubass 19070 . . 3 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑋𝐵𝑍𝐵)) → ((𝑌 + 𝑋) 𝑍) = (𝑌 + (𝑋 𝑍)))
137, 8, 9, 10, 12syl13anc 1372 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 + 𝑋) 𝑍) = (𝑌 + (𝑋 𝑍)))
14 simpl 482 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Abel)
151, 11grpsubcl 19060 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
167, 9, 10, 15syl3anc 1371 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
171, 2ablcom 19841 . . 3 ((𝐺 ∈ Abel ∧ 𝑌𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → (𝑌 + (𝑋 𝑍)) = ((𝑋 𝑍) + 𝑌))
1814, 8, 16, 17syl3anc 1371 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 + (𝑋 𝑍)) = ((𝑋 𝑍) + 𝑌))
195, 13, 183eqtrd 2784 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 𝑍) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Grpcgrp 18973  -gcsg 18975  Abelcabl 19823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825
This theorem is referenced by:  ablsubadd23  19855  ablpncan2  19857  ablsubsub  19859  ip2subdi  21685  r1padd1  33593
  Copyright terms: Public domain W3C validator