Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abladdsub Structured version   Visualization version   GIF version

 Description: Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
Assertion
Ref Expression
abladdsub ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 𝑍) + 𝑌))

StepHypRef Expression
1 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
2 ablsubadd.p . . . . 5 + = (+g𝐺)
31, 2ablcom 18991 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
433adant3r3 1181 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
54oveq1d 7165 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑌 + 𝑋) 𝑍))
6 ablgrp 18978 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
76adantr 484 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
8 simpr2 1192 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
9 simpr1 1191 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
10 simpr3 1193 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
11 ablsubadd.m . . . 4 = (-g𝐺)
121, 2, 11grpaddsubass 18256 . . 3 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑋𝐵𝑍𝐵)) → ((𝑌 + 𝑋) 𝑍) = (𝑌 + (𝑋 𝑍)))
137, 8, 9, 10, 12syl13anc 1369 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 + 𝑋) 𝑍) = (𝑌 + (𝑋 𝑍)))
14 simpl 486 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Abel)
151, 11grpsubcl 18246 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
167, 9, 10, 15syl3anc 1368 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
171, 2ablcom 18991 . . 3 ((𝐺 ∈ Abel ∧ 𝑌𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → (𝑌 + (𝑋 𝑍)) = ((𝑋 𝑍) + 𝑌))
1814, 8, 16, 17syl3anc 1368 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 + (𝑋 𝑍)) = ((𝑋 𝑍) + 𝑌))
195, 13, 183eqtrd 2797 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 𝑍) + 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ‘cfv 6335  (class class class)co 7150  Basecbs 16541  +gcplusg 16623  Grpcgrp 18169  -gcsg 18171  Abelcabl 18974 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-cmn 18975  df-abl 18976 This theorem is referenced by:  ablpncan2  19004  ablsubsub  19006  ip2subdi  20409
 Copyright terms: Public domain W3C validator