MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubaddsub Structured version   Visualization version   GIF version

Theorem ablsubaddsub 19726
Description: Double subtraction and addition in abelian groups. (cnambpcma 47404 analog.) (Contributed by AV, 3-Mar-2025.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablsubaddsub ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) + 𝑍) 𝑋) = (𝑍 𝑌))

Proof of Theorem ablsubaddsub
StepHypRef Expression
1 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
2 ablsubadd.p . . . 4 + = (+g𝐺)
3 ablsubadd.m . . . 4 = (-g𝐺)
41, 2, 3ablsubadd23 19725 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + 𝑍) = (𝑋 + (𝑍 𝑌)))
54oveq1d 7361 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) + 𝑍) 𝑋) = ((𝑋 + (𝑍 𝑌)) 𝑋))
6 simpl 482 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Abel)
7 simpr1 1195 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
8 ablgrp 19697 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
98adantr 480 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
10 simpr3 1197 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
11 simpr2 1196 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
121, 3grpsubcl 18933 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑌𝐵) → (𝑍 𝑌) ∈ 𝐵)
139, 10, 11, 12syl3anc 1373 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 𝑌) ∈ 𝐵)
141, 2ablcom 19711 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵 ∧ (𝑍 𝑌) ∈ 𝐵) → (𝑋 + (𝑍 𝑌)) = ((𝑍 𝑌) + 𝑋))
156, 7, 13, 14syl3anc 1373 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (𝑍 𝑌)) = ((𝑍 𝑌) + 𝑋))
1615oveq1d 7361 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + (𝑍 𝑌)) 𝑋) = (((𝑍 𝑌) + 𝑋) 𝑋))
171, 2, 3grpaddsubass 18943 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑍 𝑌) ∈ 𝐵𝑋𝐵𝑋𝐵)) → (((𝑍 𝑌) + 𝑋) 𝑋) = ((𝑍 𝑌) + (𝑋 𝑋)))
189, 13, 7, 7, 17syl13anc 1374 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑍 𝑌) + 𝑋) 𝑋) = ((𝑍 𝑌) + (𝑋 𝑋)))
19 eqid 2731 . . . . . 6 (0g𝐺) = (0g𝐺)
201, 19, 3grpsubid 18937 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (0g𝐺))
219, 7, 20syl2anc 584 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋) = (0g𝐺))
2221oveq2d 7362 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 𝑌) + (𝑋 𝑋)) = ((𝑍 𝑌) + (0g𝐺)))
231, 2, 19, 9, 13grpridd 18883 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 𝑌) + (0g𝐺)) = (𝑍 𝑌))
2418, 22, 233eqtrd 2770 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑍 𝑌) + 𝑋) 𝑋) = (𝑍 𝑌))
255, 16, 243eqtrd 2770 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) + 𝑍) 𝑋) = (𝑍 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  -gcsg 18848  Abelcabl 19693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-cmn 19694  df-abl 19695
This theorem is referenced by:  rngqiprngimfo  21238
  Copyright terms: Public domain W3C validator