MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubaddsub Structured version   Visualization version   GIF version

Theorem ablsubaddsub 19768
Description: Double subtraction and addition in abelian groups. (cnambpcma 46733 analog.) (Contributed by AV, 3-Mar-2025.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablsubaddsub ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) + 𝑍) 𝑋) = (𝑍 𝑌))

Proof of Theorem ablsubaddsub
StepHypRef Expression
1 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
2 ablsubadd.p . . . 4 + = (+g𝐺)
3 ablsubadd.m . . . 4 = (-g𝐺)
41, 2, 3ablsubadd23 19767 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) + 𝑍) = (𝑋 + (𝑍 𝑌)))
54oveq1d 7428 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) + 𝑍) 𝑋) = ((𝑋 + (𝑍 𝑌)) 𝑋))
6 simpl 481 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Abel)
7 simpr1 1191 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
8 ablgrp 19739 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
98adantr 479 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
10 simpr3 1193 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
11 simpr2 1192 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
121, 3grpsubcl 18975 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑌𝐵) → (𝑍 𝑌) ∈ 𝐵)
139, 10, 11, 12syl3anc 1368 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 𝑌) ∈ 𝐵)
141, 2ablcom 19753 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵 ∧ (𝑍 𝑌) ∈ 𝐵) → (𝑋 + (𝑍 𝑌)) = ((𝑍 𝑌) + 𝑋))
156, 7, 13, 14syl3anc 1368 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (𝑍 𝑌)) = ((𝑍 𝑌) + 𝑋))
1615oveq1d 7428 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + (𝑍 𝑌)) 𝑋) = (((𝑍 𝑌) + 𝑋) 𝑋))
171, 2, 3grpaddsubass 18985 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑍 𝑌) ∈ 𝐵𝑋𝐵𝑋𝐵)) → (((𝑍 𝑌) + 𝑋) 𝑋) = ((𝑍 𝑌) + (𝑋 𝑋)))
189, 13, 7, 7, 17syl13anc 1369 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑍 𝑌) + 𝑋) 𝑋) = ((𝑍 𝑌) + (𝑋 𝑋)))
19 eqid 2725 . . . . . 6 (0g𝐺) = (0g𝐺)
201, 19, 3grpsubid 18979 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (0g𝐺))
219, 7, 20syl2anc 582 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋) = (0g𝐺))
2221oveq2d 7429 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 𝑌) + (𝑋 𝑋)) = ((𝑍 𝑌) + (0g𝐺)))
231, 2, 19, 9, 13grpridd 18926 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 𝑌) + (0g𝐺)) = (𝑍 𝑌))
2418, 22, 233eqtrd 2769 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑍 𝑌) + 𝑋) 𝑋) = (𝑍 𝑌))
255, 16, 243eqtrd 2769 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 𝑌) + 𝑍) 𝑋) = (𝑍 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cfv 6543  (class class class)co 7413  Basecbs 17174  +gcplusg 17227  0gc0g 17415  Grpcgrp 18889  -gcsg 18891  Abelcabl 19735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7987  df-2nd 7988  df-0g 17417  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-grp 18892  df-minusg 18893  df-sbg 18894  df-cmn 19736  df-abl 19737
This theorem is referenced by:  rngqiprngimfo  21190
  Copyright terms: Public domain W3C validator