Step | Hyp | Ref
| Expression |
1 | | ablsubadd.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
2 | | ablsubadd.p |
. . . 4
⊢ + =
(+g‘𝐺) |
3 | | ablsubadd.m |
. . . 4
⊢ − =
(-g‘𝐺) |
4 | 1, 2, 3 | ablsubadd23 19675 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) + 𝑍) = (𝑋 + (𝑍 − 𝑌))) |
5 | 4 | oveq1d 7420 |
. 2
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 − 𝑌) + 𝑍) − 𝑋) = ((𝑋 + (𝑍 − 𝑌)) − 𝑋)) |
6 | | simpl 483 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐺 ∈ Abel) |
7 | | simpr1 1194 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
8 | | ablgrp 19647 |
. . . . . 6
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐺 ∈ Grp) |
10 | | simpr3 1196 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) |
11 | | simpr2 1195 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
12 | 1, 3 | grpsubcl 18899 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑍 − 𝑌) ∈ 𝐵) |
13 | 9, 10, 11, 12 | syl3anc 1371 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 − 𝑌) ∈ 𝐵) |
14 | 1, 2 | ablcom 19661 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ (𝑍 − 𝑌) ∈ 𝐵) → (𝑋 + (𝑍 − 𝑌)) = ((𝑍 − 𝑌) + 𝑋)) |
15 | 6, 7, 13, 14 | syl3anc 1371 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + (𝑍 − 𝑌)) = ((𝑍 − 𝑌) + 𝑋)) |
16 | 15 | oveq1d 7420 |
. 2
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + (𝑍 − 𝑌)) − 𝑋) = (((𝑍 − 𝑌) + 𝑋) − 𝑋)) |
17 | 1, 2, 3 | grpaddsubass 18909 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ ((𝑍 − 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((𝑍 − 𝑌) + 𝑋) − 𝑋) = ((𝑍 − 𝑌) + (𝑋 − 𝑋))) |
18 | 9, 13, 7, 7, 17 | syl13anc 1372 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑍 − 𝑌) + 𝑋) − 𝑋) = ((𝑍 − 𝑌) + (𝑋 − 𝑋))) |
19 | | eqid 2732 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
20 | 1, 19, 3 | grpsubid 18903 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (0g‘𝐺)) |
21 | 9, 7, 20 | syl2anc 584 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 − 𝑋) = (0g‘𝐺)) |
22 | 21 | oveq2d 7421 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑍 − 𝑌) + (𝑋 − 𝑋)) = ((𝑍 − 𝑌) + (0g‘𝐺))) |
23 | 1, 2, 19, 9, 13 | grpridd 18851 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑍 − 𝑌) + (0g‘𝐺)) = (𝑍 − 𝑌)) |
24 | 18, 22, 23 | 3eqtrd 2776 |
. 2
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑍 − 𝑌) + 𝑋) − 𝑋) = (𝑍 − 𝑌)) |
25 | 5, 16, 24 | 3eqtrd 2776 |
1
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑋 − 𝑌) + 𝑍) − 𝑋) = (𝑍 − 𝑌)) |