| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpnabl | Structured version Visualization version GIF version | ||
| Description: The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| frgpnabl.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
| Ref | Expression |
|---|---|
| frgpnabl | ⊢ (1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8903 | . . . . 5 ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i 5688 | . . . 4 ⊢ (1o ≺ 𝐼 → 𝐼 ∈ V) |
| 3 | 1sdom 9172 | . . . 4 ⊢ (𝐼 ∈ V → (1o ≺ 𝐼 ↔ ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (1o ≺ 𝐼 → (1o ≺ 𝐼 ↔ ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏)) |
| 5 | 4 | ibi 267 | . 2 ⊢ (1o ≺ 𝐼 → ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏) |
| 6 | frgpnabl.g | . . . . . 6 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o)) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ ( ~FG ‘𝐼) = ( ~FG ‘𝐼) | |
| 9 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉))) | |
| 12 | eqid 2729 | . . . . . 6 ⊢ (( I ‘Word (𝐼 × 2o)) ∖ ∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) = (( I ‘Word (𝐼 × 2o)) ∖ ∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) | |
| 13 | eqid 2729 | . . . . . 6 ⊢ (varFGrp‘𝐼) = (varFGrp‘𝐼) | |
| 14 | 2 | ad2antrr 726 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝐼 ∈ V) |
| 15 | simplrl 776 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 ∈ 𝐼) | |
| 16 | simplrr 777 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑏 ∈ 𝐼) | |
| 17 | simpr 484 | . . . . . . 7 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Abel) | |
| 18 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 19 | 8, 13, 6, 18 | vrgpf 19684 | . . . . . . . . 9 ⊢ (𝐼 ∈ V → (varFGrp‘𝐼):𝐼⟶(Base‘𝐺)) |
| 20 | 14, 19 | syl 17 | . . . . . . . 8 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → (varFGrp‘𝐼):𝐼⟶(Base‘𝐺)) |
| 21 | 20, 15 | ffvelcdmd 7040 | . . . . . . 7 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp‘𝐼)‘𝑎) ∈ (Base‘𝐺)) |
| 22 | 20, 16 | ffvelcdmd 7040 | . . . . . . 7 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp‘𝐼)‘𝑏) ∈ (Base‘𝐺)) |
| 23 | 18, 9 | ablcom 19715 | . . . . . . 7 ⊢ ((𝐺 ∈ Abel ∧ ((varFGrp‘𝐼)‘𝑎) ∈ (Base‘𝐺) ∧ ((varFGrp‘𝐼)‘𝑏) ∈ (Base‘𝐺)) → (((varFGrp‘𝐼)‘𝑎)(+g‘𝐺)((varFGrp‘𝐼)‘𝑏)) = (((varFGrp‘𝐼)‘𝑏)(+g‘𝐺)((varFGrp‘𝐼)‘𝑎))) |
| 24 | 17, 21, 22, 23 | syl3anc 1373 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → (((varFGrp‘𝐼)‘𝑎)(+g‘𝐺)((varFGrp‘𝐼)‘𝑏)) = (((varFGrp‘𝐼)‘𝑏)(+g‘𝐺)((varFGrp‘𝐼)‘𝑎))) |
| 25 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 24 | frgpnabllem2 19790 | . . . . 5 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 = 𝑏) |
| 26 | 25 | ex 412 | . . . 4 ⊢ ((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) → (𝐺 ∈ Abel → 𝑎 = 𝑏)) |
| 27 | 26 | con3d 152 | . . 3 ⊢ ((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel)) |
| 28 | 27 | rexlimdvva 3192 | . 2 ⊢ (1o ≺ 𝐼 → (∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel)) |
| 29 | 5, 28 | mpd 15 | 1 ⊢ (1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 ∖ cdif 3908 〈cop 4591 〈cotp 4593 ∪ ciun 4951 class class class wbr 5102 ↦ cmpt 5183 I cid 5525 × cxp 5629 ran crn 5632 ⟶wf 6496 ‘cfv 6500 (class class class)co 7370 ∈ cmpo 7372 1oc1o 8405 2oc2o 8406 ≺ csdm 8895 0cc0 11047 ...cfz 13447 ♯chash 14274 Word cword 14457 splice csplice 14692 〈“cs2 14785 Basecbs 17157 +gcplusg 17198 ~FG cefg 19622 freeGrpcfrgp 19623 varFGrpcvrgp 19624 Abelcabl 19697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8649 df-ec 8651 df-qs 8655 df-map 8779 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-sup 9370 df-inf 9371 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-xnn0 12495 df-z 12509 df-dec 12629 df-uz 12773 df-rp 12931 df-fz 13448 df-fzo 13595 df-hash 14275 df-word 14458 df-lsw 14507 df-concat 14515 df-s1 14540 df-substr 14585 df-pfx 14615 df-splice 14693 df-reverse 14702 df-s2 14792 df-struct 17095 df-slot 17130 df-ndx 17142 df-base 17158 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-0g 17382 df-imas 17449 df-qus 17450 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-frmd 18760 df-grp 18852 df-efg 19625 df-frgp 19626 df-vrgp 19627 df-cmn 19698 df-abl 19699 |
| This theorem is referenced by: frgpcyg 21517 |
| Copyright terms: Public domain | W3C validator |