| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpnabl | Structured version Visualization version GIF version | ||
| Description: The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| frgpnabl.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
| Ref | Expression |
|---|---|
| frgpnabl | ⊢ (1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8882 | . . . . 5 ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i 5676 | . . . 4 ⊢ (1o ≺ 𝐼 → 𝐼 ∈ V) |
| 3 | 1sdom 9145 | . . . 4 ⊢ (𝐼 ∈ V → (1o ≺ 𝐼 ↔ ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (1o ≺ 𝐼 → (1o ≺ 𝐼 ↔ ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏)) |
| 5 | 4 | ibi 267 | . 2 ⊢ (1o ≺ 𝐼 → ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏) |
| 6 | frgpnabl.g | . . . . . 6 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o)) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ ( ~FG ‘𝐼) = ( ~FG ‘𝐼) | |
| 9 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 10 | eqid 2731 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 11 | eqid 2731 | . . . . . 6 ⊢ (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉))) | |
| 12 | eqid 2731 | . . . . . 6 ⊢ (( I ‘Word (𝐼 × 2o)) ∖ ∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) = (( I ‘Word (𝐼 × 2o)) ∖ ∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) | |
| 13 | eqid 2731 | . . . . . 6 ⊢ (varFGrp‘𝐼) = (varFGrp‘𝐼) | |
| 14 | 2 | ad2antrr 726 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝐼 ∈ V) |
| 15 | simplrl 776 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 ∈ 𝐼) | |
| 16 | simplrr 777 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑏 ∈ 𝐼) | |
| 17 | simpr 484 | . . . . . . 7 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Abel) | |
| 18 | eqid 2731 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 19 | 8, 13, 6, 18 | vrgpf 19686 | . . . . . . . . 9 ⊢ (𝐼 ∈ V → (varFGrp‘𝐼):𝐼⟶(Base‘𝐺)) |
| 20 | 14, 19 | syl 17 | . . . . . . . 8 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → (varFGrp‘𝐼):𝐼⟶(Base‘𝐺)) |
| 21 | 20, 15 | ffvelcdmd 7024 | . . . . . . 7 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp‘𝐼)‘𝑎) ∈ (Base‘𝐺)) |
| 22 | 20, 16 | ffvelcdmd 7024 | . . . . . . 7 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp‘𝐼)‘𝑏) ∈ (Base‘𝐺)) |
| 23 | 18, 9 | ablcom 19717 | . . . . . . 7 ⊢ ((𝐺 ∈ Abel ∧ ((varFGrp‘𝐼)‘𝑎) ∈ (Base‘𝐺) ∧ ((varFGrp‘𝐼)‘𝑏) ∈ (Base‘𝐺)) → (((varFGrp‘𝐼)‘𝑎)(+g‘𝐺)((varFGrp‘𝐼)‘𝑏)) = (((varFGrp‘𝐼)‘𝑏)(+g‘𝐺)((varFGrp‘𝐼)‘𝑎))) |
| 24 | 17, 21, 22, 23 | syl3anc 1373 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → (((varFGrp‘𝐼)‘𝑎)(+g‘𝐺)((varFGrp‘𝐼)‘𝑏)) = (((varFGrp‘𝐼)‘𝑏)(+g‘𝐺)((varFGrp‘𝐼)‘𝑎))) |
| 25 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 24 | frgpnabllem2 19792 | . . . . 5 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 = 𝑏) |
| 26 | 25 | ex 412 | . . . 4 ⊢ ((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) → (𝐺 ∈ Abel → 𝑎 = 𝑏)) |
| 27 | 26 | con3d 152 | . . 3 ⊢ ((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel)) |
| 28 | 27 | rexlimdvva 3189 | . 2 ⊢ (1o ≺ 𝐼 → (∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel)) |
| 29 | 5, 28 | mpd 15 | 1 ⊢ (1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ∖ cdif 3894 〈cop 4581 〈cotp 4583 ∪ ciun 4941 class class class wbr 5093 ↦ cmpt 5174 I cid 5513 × cxp 5617 ran crn 5620 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 ∈ cmpo 7354 1oc1o 8384 2oc2o 8385 ≺ csdm 8874 0cc0 11012 ...cfz 13413 ♯chash 14243 Word cword 14426 splice csplice 14662 〈“cs2 14754 Basecbs 17126 +gcplusg 17167 ~FG cefg 19624 freeGrpcfrgp 19625 varFGrpcvrgp 19626 Abelcabl 19699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-ec 8630 df-qs 8634 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9332 df-inf 9333 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-xnn0 12461 df-z 12475 df-dec 12595 df-uz 12739 df-rp 12897 df-fz 13414 df-fzo 13561 df-hash 14244 df-word 14427 df-lsw 14476 df-concat 14484 df-s1 14510 df-substr 14555 df-pfx 14585 df-splice 14663 df-reverse 14672 df-s2 14761 df-struct 17064 df-slot 17099 df-ndx 17111 df-base 17127 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-0g 17351 df-imas 17418 df-qus 17419 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-frmd 18763 df-grp 18855 df-efg 19627 df-frgp 19628 df-vrgp 19629 df-cmn 19700 df-abl 19701 |
| This theorem is referenced by: frgpcyg 21516 |
| Copyright terms: Public domain | W3C validator |