Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgpnabl | Structured version Visualization version GIF version |
Description: The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
frgpnabl.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
Ref | Expression |
---|---|
frgpnabl | ⊢ (1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8633 | . . . . 5 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5606 | . . . 4 ⊢ (1o ≺ 𝐼 → 𝐼 ∈ V) |
3 | 1sdom 8881 | . . . 4 ⊢ (𝐼 ∈ V → (1o ≺ 𝐼 ↔ ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (1o ≺ 𝐼 → (1o ≺ 𝐼 ↔ ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏)) |
5 | 4 | ibi 270 | . 2 ⊢ (1o ≺ 𝐼 → ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏) |
6 | frgpnabl.g | . . . . . 6 ⊢ 𝐺 = (freeGrp‘𝐼) | |
7 | eqid 2737 | . . . . . 6 ⊢ ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o)) | |
8 | eqid 2737 | . . . . . 6 ⊢ ( ~FG ‘𝐼) = ( ~FG ‘𝐼) | |
9 | eqid 2737 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
10 | eqid 2737 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
11 | eqid 2737 | . . . . . 6 ⊢ (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉))) | |
12 | eqid 2737 | . . . . . 6 ⊢ (( I ‘Word (𝐼 × 2o)) ∖ ∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) = (( I ‘Word (𝐼 × 2o)) ∖ ∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) | |
13 | eqid 2737 | . . . . . 6 ⊢ (varFGrp‘𝐼) = (varFGrp‘𝐼) | |
14 | 2 | ad2antrr 726 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝐼 ∈ V) |
15 | simplrl 777 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 ∈ 𝐼) | |
16 | simplrr 778 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑏 ∈ 𝐼) | |
17 | simpr 488 | . . . . . . 7 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Abel) | |
18 | eqid 2737 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
19 | 8, 13, 6, 18 | vrgpf 19158 | . . . . . . . . 9 ⊢ (𝐼 ∈ V → (varFGrp‘𝐼):𝐼⟶(Base‘𝐺)) |
20 | 14, 19 | syl 17 | . . . . . . . 8 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → (varFGrp‘𝐼):𝐼⟶(Base‘𝐺)) |
21 | 20, 15 | ffvelrnd 6905 | . . . . . . 7 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp‘𝐼)‘𝑎) ∈ (Base‘𝐺)) |
22 | 20, 16 | ffvelrnd 6905 | . . . . . . 7 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp‘𝐼)‘𝑏) ∈ (Base‘𝐺)) |
23 | 18, 9 | ablcom 19188 | . . . . . . 7 ⊢ ((𝐺 ∈ Abel ∧ ((varFGrp‘𝐼)‘𝑎) ∈ (Base‘𝐺) ∧ ((varFGrp‘𝐼)‘𝑏) ∈ (Base‘𝐺)) → (((varFGrp‘𝐼)‘𝑎)(+g‘𝐺)((varFGrp‘𝐼)‘𝑏)) = (((varFGrp‘𝐼)‘𝑏)(+g‘𝐺)((varFGrp‘𝐼)‘𝑎))) |
24 | 17, 21, 22, 23 | syl3anc 1373 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → (((varFGrp‘𝐼)‘𝑎)(+g‘𝐺)((varFGrp‘𝐼)‘𝑏)) = (((varFGrp‘𝐼)‘𝑏)(+g‘𝐺)((varFGrp‘𝐼)‘𝑎))) |
25 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 24 | frgpnabllem2 19259 | . . . . 5 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 = 𝑏) |
26 | 25 | ex 416 | . . . 4 ⊢ ((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) → (𝐺 ∈ Abel → 𝑎 = 𝑏)) |
27 | 26 | con3d 155 | . . 3 ⊢ ((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel)) |
28 | 27 | rexlimdvva 3213 | . 2 ⊢ (1o ≺ 𝐼 → (∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel)) |
29 | 5, 28 | mpd 15 | 1 ⊢ (1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 Vcvv 3408 ∖ cdif 3863 〈cop 4547 〈cotp 4549 ∪ ciun 4904 class class class wbr 5053 ↦ cmpt 5135 I cid 5454 × cxp 5549 ran crn 5552 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ∈ cmpo 7215 1oc1o 8195 2oc2o 8196 ≺ csdm 8625 0cc0 10729 ...cfz 13095 ♯chash 13896 Word cword 14069 splice csplice 14314 〈“cs2 14406 Basecbs 16760 +gcplusg 16802 ~FG cefg 19096 freeGrpcfrgp 19097 varFGrpcvrgp 19098 Abelcabl 19171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-ot 4550 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-ec 8393 df-qs 8397 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-inf 9059 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-xnn0 12163 df-z 12177 df-dec 12294 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-hash 13897 df-word 14070 df-lsw 14118 df-concat 14126 df-s1 14153 df-substr 14206 df-pfx 14236 df-splice 14315 df-reverse 14324 df-s2 14413 df-struct 16700 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-0g 16946 df-imas 17013 df-qus 17014 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-frmd 18276 df-grp 18368 df-efg 19099 df-frgp 19100 df-vrgp 19101 df-cmn 19172 df-abl 19173 |
This theorem is referenced by: frgpcyg 20538 |
Copyright terms: Public domain | W3C validator |