Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgpnabl | Structured version Visualization version GIF version |
Description: The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
frgpnabl.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
Ref | Expression |
---|---|
frgpnabl | ⊢ (1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8698 | . . . . 5 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5635 | . . . 4 ⊢ (1o ≺ 𝐼 → 𝐼 ∈ V) |
3 | 1sdom 8955 | . . . 4 ⊢ (𝐼 ∈ V → (1o ≺ 𝐼 ↔ ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (1o ≺ 𝐼 → (1o ≺ 𝐼 ↔ ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏)) |
5 | 4 | ibi 266 | . 2 ⊢ (1o ≺ 𝐼 → ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏) |
6 | frgpnabl.g | . . . . . 6 ⊢ 𝐺 = (freeGrp‘𝐼) | |
7 | eqid 2738 | . . . . . 6 ⊢ ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o)) | |
8 | eqid 2738 | . . . . . 6 ⊢ ( ~FG ‘𝐼) = ( ~FG ‘𝐼) | |
9 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
10 | eqid 2738 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
11 | eqid 2738 | . . . . . 6 ⊢ (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉))) | |
12 | eqid 2738 | . . . . . 6 ⊢ (( I ‘Word (𝐼 × 2o)) ∖ ∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) = (( I ‘Word (𝐼 × 2o)) ∖ ∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) | |
13 | eqid 2738 | . . . . . 6 ⊢ (varFGrp‘𝐼) = (varFGrp‘𝐼) | |
14 | 2 | ad2antrr 722 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝐼 ∈ V) |
15 | simplrl 773 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 ∈ 𝐼) | |
16 | simplrr 774 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑏 ∈ 𝐼) | |
17 | simpr 484 | . . . . . . 7 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Abel) | |
18 | eqid 2738 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
19 | 8, 13, 6, 18 | vrgpf 19289 | . . . . . . . . 9 ⊢ (𝐼 ∈ V → (varFGrp‘𝐼):𝐼⟶(Base‘𝐺)) |
20 | 14, 19 | syl 17 | . . . . . . . 8 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → (varFGrp‘𝐼):𝐼⟶(Base‘𝐺)) |
21 | 20, 15 | ffvelrnd 6944 | . . . . . . 7 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp‘𝐼)‘𝑎) ∈ (Base‘𝐺)) |
22 | 20, 16 | ffvelrnd 6944 | . . . . . . 7 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp‘𝐼)‘𝑏) ∈ (Base‘𝐺)) |
23 | 18, 9 | ablcom 19319 | . . . . . . 7 ⊢ ((𝐺 ∈ Abel ∧ ((varFGrp‘𝐼)‘𝑎) ∈ (Base‘𝐺) ∧ ((varFGrp‘𝐼)‘𝑏) ∈ (Base‘𝐺)) → (((varFGrp‘𝐼)‘𝑎)(+g‘𝐺)((varFGrp‘𝐼)‘𝑏)) = (((varFGrp‘𝐼)‘𝑏)(+g‘𝐺)((varFGrp‘𝐼)‘𝑎))) |
24 | 17, 21, 22, 23 | syl3anc 1369 | . . . . . 6 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → (((varFGrp‘𝐼)‘𝑎)(+g‘𝐺)((varFGrp‘𝐼)‘𝑏)) = (((varFGrp‘𝐼)‘𝑏)(+g‘𝐺)((varFGrp‘𝐼)‘𝑎))) |
25 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 24 | frgpnabllem2 19390 | . . . . 5 ⊢ (((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 = 𝑏) |
26 | 25 | ex 412 | . . . 4 ⊢ ((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) → (𝐺 ∈ Abel → 𝑎 = 𝑏)) |
27 | 26 | con3d 152 | . . 3 ⊢ ((1o ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel)) |
28 | 27 | rexlimdvva 3222 | . 2 ⊢ (1o ≺ 𝐼 → (∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel)) |
29 | 5, 28 | mpd 15 | 1 ⊢ (1o ≺ 𝐼 → ¬ 𝐺 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 〈cop 4564 〈cotp 4566 ∪ ciun 4921 class class class wbr 5070 ↦ cmpt 5153 I cid 5479 × cxp 5578 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1oc1o 8260 2oc2o 8261 ≺ csdm 8690 0cc0 10802 ...cfz 13168 ♯chash 13972 Word cword 14145 splice csplice 14390 〈“cs2 14482 Basecbs 16840 +gcplusg 16888 ~FG cefg 19227 freeGrpcfrgp 19228 varFGrpcvrgp 19229 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-reverse 14400 df-s2 14489 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-imas 17136 df-qus 17137 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-frmd 18403 df-grp 18495 df-efg 19230 df-frgp 19231 df-vrgp 19232 df-cmn 19303 df-abl 19304 |
This theorem is referenced by: frgpcyg 20693 |
Copyright terms: Public domain | W3C validator |