MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpnabl Structured version   Visualization version   GIF version

Theorem frgpnabl 18994
Description: The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypothesis
Ref Expression
frgpnabl.g 𝐺 = (freeGrp‘𝐼)
Assertion
Ref Expression
frgpnabl (1o𝐼 → ¬ 𝐺 ∈ Abel)

Proof of Theorem frgpnabl
Dummy variables 𝑎 𝑏 𝑥 𝑛 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 8515 . . . . 5 Rel ≺
21brrelex2i 5608 . . . 4 (1o𝐼𝐼 ∈ V)
3 1sdom 8720 . . . 4 (𝐼 ∈ V → (1o𝐼 ↔ ∃𝑎𝐼𝑏𝐼 ¬ 𝑎 = 𝑏))
42, 3syl 17 . . 3 (1o𝐼 → (1o𝐼 ↔ ∃𝑎𝐼𝑏𝐼 ¬ 𝑎 = 𝑏))
54ibi 269 . 2 (1o𝐼 → ∃𝑎𝐼𝑏𝐼 ¬ 𝑎 = 𝑏)
6 frgpnabl.g . . . . . 6 𝐺 = (freeGrp‘𝐼)
7 eqid 2821 . . . . . 6 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
8 eqid 2821 . . . . . 6 ( ~FG𝐼) = ( ~FG𝐼)
9 eqid 2821 . . . . . 6 (+g𝐺) = (+g𝐺)
10 eqid 2821 . . . . . 6 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
11 eqid 2821 . . . . . 6 (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))
12 eqid 2821 . . . . . 6 (( I ‘Word (𝐼 × 2o)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥)) = (( I ‘Word (𝐼 × 2o)) ∖ 𝑥 ∈ ( I ‘Word (𝐼 × 2o))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))‘𝑥))
13 eqid 2821 . . . . . 6 (varFGrp𝐼) = (varFGrp𝐼)
142ad2antrr 724 . . . . . 6 (((1o𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝐼 ∈ V)
15 simplrl 775 . . . . . 6 (((1o𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎𝐼)
16 simplrr 776 . . . . . 6 (((1o𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝑏𝐼)
17 simpr 487 . . . . . . 7 (((1o𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Abel)
18 eqid 2821 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
198, 13, 6, 18vrgpf 18893 . . . . . . . . 9 (𝐼 ∈ V → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
2014, 19syl 17 . . . . . . . 8 (((1o𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → (varFGrp𝐼):𝐼⟶(Base‘𝐺))
2120, 15ffvelrnd 6851 . . . . . . 7 (((1o𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp𝐼)‘𝑎) ∈ (Base‘𝐺))
2220, 16ffvelrnd 6851 . . . . . . 7 (((1o𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp𝐼)‘𝑏) ∈ (Base‘𝐺))
2318, 9ablcom 18923 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((varFGrp𝐼)‘𝑎) ∈ (Base‘𝐺) ∧ ((varFGrp𝐼)‘𝑏) ∈ (Base‘𝐺)) → (((varFGrp𝐼)‘𝑎)(+g𝐺)((varFGrp𝐼)‘𝑏)) = (((varFGrp𝐼)‘𝑏)(+g𝐺)((varFGrp𝐼)‘𝑎)))
2417, 21, 22, 23syl3anc 1367 . . . . . 6 (((1o𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → (((varFGrp𝐼)‘𝑎)(+g𝐺)((varFGrp𝐼)‘𝑏)) = (((varFGrp𝐼)‘𝑏)(+g𝐺)((varFGrp𝐼)‘𝑎)))
256, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 24frgpnabllem2 18993 . . . . 5 (((1o𝐼 ∧ (𝑎𝐼𝑏𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 = 𝑏)
2625ex 415 . . . 4 ((1o𝐼 ∧ (𝑎𝐼𝑏𝐼)) → (𝐺 ∈ Abel → 𝑎 = 𝑏))
2726con3d 155 . . 3 ((1o𝐼 ∧ (𝑎𝐼𝑏𝐼)) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel))
2827rexlimdvva 3294 . 2 (1o𝐼 → (∃𝑎𝐼𝑏𝐼 ¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel))
295, 28mpd 15 1 (1o𝐼 → ¬ 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139  Vcvv 3494  cdif 3932  cop 4572  cotp 4574   ciun 4918   class class class wbr 5065  cmpt 5145   I cid 5458   × cxp 5552  ran crn 5555  wf 6350  cfv 6354  (class class class)co 7155  cmpo 7157  1oc1o 8094  2oc2o 8095  csdm 8507  0cc0 10536  ...cfz 12891  chash 13689  Word cword 13860   splice csplice 14110  ⟨“cs2 14202  Basecbs 16482  +gcplusg 16564   ~FG cefg 18831  freeGrpcfrgp 18832  varFGrpcvrgp 18833  Abelcabl 18906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-ec 8290  df-qs 8294  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-xnn0 11967  df-z 11981  df-dec 12098  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-lsw 13914  df-concat 13922  df-s1 13949  df-substr 14002  df-pfx 14032  df-splice 14111  df-reverse 14120  df-s2 14209  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-0g 16714  df-imas 16780  df-qus 16781  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-frmd 18013  df-grp 18105  df-efg 18834  df-frgp 18835  df-vrgp 18836  df-cmn 18907  df-abl 18908
This theorem is referenced by:  frgpcyg  20719
  Copyright terms: Public domain W3C validator