Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablpncan3 | Structured version Visualization version GIF version |
Description: A cancellation law for commutative groups. (Contributed by NM, 23-Mar-2015.) |
Ref | Expression |
---|---|
ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
ablsubadd.p | ⊢ + = (+g‘𝐺) |
ablsubadd.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
ablpncan3 | ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 + (𝑌 − 𝑋)) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 ∈ Abel) | |
2 | simprl 768 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
3 | ablgrp 19389 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐺 ∈ Grp) |
5 | simprr 770 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
6 | ablsubadd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
7 | ablsubadd.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
8 | 6, 7 | grpsubcl 18653 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 − 𝑋) ∈ 𝐵) |
9 | 4, 5, 2, 8 | syl3anc 1370 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑌 − 𝑋) ∈ 𝐵) |
10 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
11 | 6, 10 | ablcom 19402 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ (𝑌 − 𝑋) ∈ 𝐵) → (𝑋 + (𝑌 − 𝑋)) = ((𝑌 − 𝑋) + 𝑋)) |
12 | 1, 2, 9, 11 | syl3anc 1370 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 + (𝑌 − 𝑋)) = ((𝑌 − 𝑋) + 𝑋)) |
13 | 6, 10, 7 | grpnpcan 18665 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑌 − 𝑋) + 𝑋) = 𝑌) |
14 | 4, 5, 2, 13 | syl3anc 1370 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑌 − 𝑋) + 𝑋) = 𝑌) |
15 | 12, 14 | eqtrd 2778 | 1 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 + (𝑌 − 𝑋)) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6435 (class class class)co 7277 Basecbs 16910 +gcplusg 16960 Grpcgrp 18575 -gcsg 18577 Abelcabl 19385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-1st 7831 df-2nd 7832 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-minusg 18579 df-sbg 18580 df-cmn 19386 df-abl 19387 |
This theorem is referenced by: ablnnncan 19422 tsmsxplem2 23303 pjthlem2 24600 |
Copyright terms: Public domain | W3C validator |