MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablpncan3 Structured version   Visualization version   GIF version

Theorem ablpncan3 19771
Description: A cancellation law for Abelian groups. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablpncan3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 + (𝑌 𝑋)) = 𝑌)

Proof of Theorem ablpncan3
StepHypRef Expression
1 simpl 482 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Abel)
2 simprl 770 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
3 ablgrp 19740 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
43adantr 480 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
5 simprr 772 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
6 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
7 ablsubadd.m . . . . 5 = (-g𝐺)
86, 7grpsubcl 18976 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋) ∈ 𝐵)
94, 5, 2, 8syl3anc 1369 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → (𝑌 𝑋) ∈ 𝐵)
10 ablsubadd.p . . . 4 + = (+g𝐺)
116, 10ablcom 19754 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵 ∧ (𝑌 𝑋) ∈ 𝐵) → (𝑋 + (𝑌 𝑋)) = ((𝑌 𝑋) + 𝑋))
121, 2, 9, 11syl3anc 1369 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 + (𝑌 𝑋)) = ((𝑌 𝑋) + 𝑋))
136, 10, 7grpnpcan 18988 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → ((𝑌 𝑋) + 𝑋) = 𝑌)
144, 5, 2, 13syl3anc 1369 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → ((𝑌 𝑋) + 𝑋) = 𝑌)
1512, 14eqtrd 2768 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 + (𝑌 𝑋)) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  Basecbs 17180  +gcplusg 17233  Grpcgrp 18890  -gcsg 18892  Abelcabl 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18893  df-minusg 18894  df-sbg 18895  df-cmn 19737  df-abl 19738
This theorem is referenced by:  ablnnncan  19777  tsmsxplem2  24071  pjthlem2  25379
  Copyright terms: Public domain W3C validator