MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgabl Structured version   Visualization version   GIF version

Theorem eqgabl 19481
Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgabl.x 𝑋 = (Base‘𝐺)
eqgabl.n = (-g𝐺)
eqgabl.r = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqgabl ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))

Proof of Theorem eqgabl
StepHypRef Expression
1 eqgabl.x . . 3 𝑋 = (Base‘𝐺)
2 eqid 2736 . . 3 (invg𝐺) = (invg𝐺)
3 eqid 2736 . . 3 (+g𝐺) = (+g𝐺)
4 eqgabl.r . . 3 = (𝐺 ~QG 𝑆)
51, 2, 3, 4eqgval 18850 . 2 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆)))
6 simpll 765 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Abel)
7 ablgrp 19436 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
87ad2antrr 724 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Grp)
9 simprl 769 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
101, 2grpinvcl 18672 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
118, 9, 10syl2anc 585 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
12 simprr 771 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
131, 3ablcom 19449 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝐵𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
146, 11, 12, 13syl3anc 1371 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
15 eqgabl.n . . . . . . . 8 = (-g𝐺)
161, 3, 2, 15grpsubval 18670 . . . . . . 7 ((𝐵𝑋𝐴𝑋) → (𝐵 𝐴) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
1712, 9, 16syl2anc 585 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 𝐴) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
1814, 17eqtr4d 2779 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵 𝐴))
1918eleq1d 2821 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆 ↔ (𝐵 𝐴) ∈ 𝑆))
2019pm5.32da 580 . . 3 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (((𝐴𝑋𝐵𝑋) ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐵 𝐴) ∈ 𝑆)))
21 df-3an 1089 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆))
22 df-3an 1089 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐵 𝐴) ∈ 𝑆))
2320, 21, 223bitr4g 314 . 2 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → ((𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
245, 23bitrd 279 1 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wss 3892   class class class wbr 5081  cfv 6458  (class class class)co 7307  Basecbs 16957  +gcplusg 17007  Grpcgrp 18622  invgcminusg 18623  -gcsg 18624   ~QG cqg 18796  Abelcabl 19432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-0g 17197  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-grp 18625  df-minusg 18626  df-sbg 18627  df-eqg 18799  df-cmn 19433  df-abl 19434
This theorem is referenced by:  2idlcpbl  20550  zndvds  20802  tgptsmscls  23346
  Copyright terms: Public domain W3C validator