MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgabl Structured version   Visualization version   GIF version

Theorem eqgabl 19748
Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgabl.x 𝑋 = (Base‘𝐺)
eqgabl.n = (-g𝐺)
eqgabl.r = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqgabl ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))

Proof of Theorem eqgabl
StepHypRef Expression
1 eqgabl.x . . 3 𝑋 = (Base‘𝐺)
2 eqid 2729 . . 3 (invg𝐺) = (invg𝐺)
3 eqid 2729 . . 3 (+g𝐺) = (+g𝐺)
4 eqgabl.r . . 3 = (𝐺 ~QG 𝑆)
51, 2, 3, 4eqgval 19091 . 2 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆)))
6 simpll 766 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Abel)
7 ablgrp 19699 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
87ad2antrr 726 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Grp)
9 simprl 770 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
101, 2grpinvcl 18901 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
118, 9, 10syl2anc 584 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
12 simprr 772 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
131, 3ablcom 19713 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝐵𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
146, 11, 12, 13syl3anc 1373 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
15 eqgabl.n . . . . . . . 8 = (-g𝐺)
161, 3, 2, 15grpsubval 18899 . . . . . . 7 ((𝐵𝑋𝐴𝑋) → (𝐵 𝐴) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
1712, 9, 16syl2anc 584 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 𝐴) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
1814, 17eqtr4d 2767 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵 𝐴))
1918eleq1d 2813 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆 ↔ (𝐵 𝐴) ∈ 𝑆))
2019pm5.32da 579 . . 3 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (((𝐴𝑋𝐵𝑋) ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐵 𝐴) ∈ 𝑆)))
21 df-3an 1088 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆))
22 df-3an 1088 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐵 𝐴) ∈ 𝑆))
2320, 21, 223bitr4g 314 . 2 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → ((𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
245, 23bitrd 279 1 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Grpcgrp 18847  invgcminusg 18848  -gcsg 18849   ~QG cqg 19036  Abelcabl 19695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-eqg 19039  df-cmn 19696  df-abl 19697
This theorem is referenced by:  qusecsub  19749  2idlcpblrng  21213  rngqiprngfulem2  21254  zndvds  21491  tgptsmscls  24070
  Copyright terms: Public domain W3C validator