MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgabl Structured version   Visualization version   GIF version

Theorem eqgabl 19827
Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgabl.x 𝑋 = (Base‘𝐺)
eqgabl.n = (-g𝐺)
eqgabl.r = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqgabl ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))

Proof of Theorem eqgabl
StepHypRef Expression
1 eqgabl.x . . 3 𝑋 = (Base‘𝐺)
2 eqid 2725 . . 3 (invg𝐺) = (invg𝐺)
3 eqid 2725 . . 3 (+g𝐺) = (+g𝐺)
4 eqgabl.r . . 3 = (𝐺 ~QG 𝑆)
51, 2, 3, 4eqgval 19166 . 2 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆)))
6 simpll 765 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Abel)
7 ablgrp 19778 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
87ad2antrr 724 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Grp)
9 simprl 769 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
101, 2grpinvcl 18977 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
118, 9, 10syl2anc 582 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
12 simprr 771 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
131, 3ablcom 19792 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝐵𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
146, 11, 12, 13syl3anc 1368 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
15 eqgabl.n . . . . . . . 8 = (-g𝐺)
161, 3, 2, 15grpsubval 18975 . . . . . . 7 ((𝐵𝑋𝐴𝑋) → (𝐵 𝐴) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
1712, 9, 16syl2anc 582 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 𝐴) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
1814, 17eqtr4d 2768 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵 𝐴))
1918eleq1d 2810 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆 ↔ (𝐵 𝐴) ∈ 𝑆))
2019pm5.32da 577 . . 3 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (((𝐴𝑋𝐵𝑋) ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐵 𝐴) ∈ 𝑆)))
21 df-3an 1086 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆))
22 df-3an 1086 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐵 𝐴) ∈ 𝑆))
2320, 21, 223bitr4g 313 . 2 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → ((𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
245, 23bitrd 278 1 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wss 3946   class class class wbr 5152  cfv 6553  (class class class)co 7423  Basecbs 17208  +gcplusg 17261  Grpcgrp 18923  invgcminusg 18924  -gcsg 18925   ~QG cqg 19111  Abelcabl 19774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-1st 8002  df-2nd 8003  df-0g 17451  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-grp 18926  df-minusg 18927  df-sbg 18928  df-eqg 19114  df-cmn 19775  df-abl 19776
This theorem is referenced by:  qusecsub  19828  2idlcpblrng  21207  rngqiprngfulem2  21248  zndvds  21539  tgptsmscls  24137
  Copyright terms: Public domain W3C validator