| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablsub32 | Structured version Visualization version GIF version | ||
| Description: Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| ablnncan.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablnncan.m | ⊢ − = (-g‘𝐺) |
| ablnncan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablnncan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablnncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ablsub32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ablsub32 | ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑍) − 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablnncan.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablnncan.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | ablsub32.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 4 | ablnncan.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 4, 5 | ablcom 19709 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)𝑌)) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑌(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)𝑌)) |
| 8 | 7 | oveq2d 7362 | . 2 ⊢ (𝜑 → (𝑋 − (𝑌(+g‘𝐺)𝑍)) = (𝑋 − (𝑍(+g‘𝐺)𝑌))) |
| 9 | ablnncan.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 10 | ablnncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | 4, 5, 9, 1, 10, 2, 3 | ablsubsub4 19728 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌(+g‘𝐺)𝑍))) |
| 12 | 4, 5, 9, 1, 10, 3, 2 | ablsubsub4 19728 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑍) − 𝑌) = (𝑋 − (𝑍(+g‘𝐺)𝑌))) |
| 13 | 8, 11, 12 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑍) − 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 -gcsg 18845 Abelcabl 19691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 df-cmn 19692 df-abl 19693 |
| This theorem is referenced by: ablnnncan1 19733 baerlem5alem2 41749 |
| Copyright terms: Public domain | W3C validator |