MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsub32 Structured version   Visualization version   GIF version

Theorem ablsub32 19854
Description: Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
ablsub32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablsub32 (𝜑 → ((𝑋 𝑌) 𝑍) = ((𝑋 𝑍) 𝑌))

Proof of Theorem ablsub32
StepHypRef Expression
1 ablnncan.g . . . 4 (𝜑𝐺 ∈ Abel)
2 ablnncan.y . . . 4 (𝜑𝑌𝐵)
3 ablsub32.z . . . 4 (𝜑𝑍𝐵)
4 ablnncan.b . . . . 5 𝐵 = (Base‘𝐺)
5 eqid 2735 . . . . 5 (+g𝐺) = (+g𝐺)
64, 5ablcom 19832 . . . 4 ((𝐺 ∈ Abel ∧ 𝑌𝐵𝑍𝐵) → (𝑌(+g𝐺)𝑍) = (𝑍(+g𝐺)𝑌))
71, 2, 3, 6syl3anc 1370 . . 3 (𝜑 → (𝑌(+g𝐺)𝑍) = (𝑍(+g𝐺)𝑌))
87oveq2d 7447 . 2 (𝜑 → (𝑋 (𝑌(+g𝐺)𝑍)) = (𝑋 (𝑍(+g𝐺)𝑌)))
9 ablnncan.m . . 3 = (-g𝐺)
10 ablnncan.x . . 3 (𝜑𝑋𝐵)
114, 5, 9, 1, 10, 2, 3ablsubsub4 19851 . 2 (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌(+g𝐺)𝑍)))
124, 5, 9, 1, 10, 3, 2ablsubsub4 19851 . 2 (𝜑 → ((𝑋 𝑍) 𝑌) = (𝑋 (𝑍(+g𝐺)𝑌)))
138, 11, 123eqtr4d 2785 1 (𝜑 → ((𝑋 𝑌) 𝑍) = ((𝑋 𝑍) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  -gcsg 18966  Abelcabl 19814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-cmn 19815  df-abl 19816
This theorem is referenced by:  ablnnncan1  19856  baerlem5alem2  41694
  Copyright terms: Public domain W3C validator