![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablinvadd | Structured version Visualization version GIF version |
Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
ablinvadd.b | ⊢ 𝐵 = (Base‘𝐺) |
ablinvadd.p | ⊢ + = (+g‘𝐺) |
ablinvadd.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
ablinvadd | ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑋) + (𝑁‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablgrp 19818 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
2 | ablinvadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | ablinvadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
4 | ablinvadd.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
5 | 2, 3, 4 | grpinvadd 19049 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
6 | 1, 5 | syl3an1 1162 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
7 | simp1 1135 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Abel) | |
8 | 1 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Grp) |
9 | simp2 1136 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | 2, 4 | grpinvcl 19018 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
11 | 8, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
12 | simp3 1137 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
13 | 2, 4 | grpinvcl 19018 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
14 | 8, 12, 13 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
15 | 2, 3 | ablcom 19832 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → ((𝑁‘𝑋) + (𝑁‘𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
16 | 7, 11, 14, 15 | syl3anc 1370 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) + (𝑁‘𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
17 | 6, 16 | eqtr4d 2778 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑋) + (𝑁‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Grpcgrp 18964 invgcminusg 18965 Abelcabl 19814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-cmn 19815 df-abl 19816 |
This theorem is referenced by: ablsub4 19843 mulgdi 19859 invghm 19866 lmodnegadd 20926 lflnegcl 39057 baerlem3lem1 41690 |
Copyright terms: Public domain | W3C validator |