MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablinvadd Structured version   Visualization version   GIF version

Theorem ablinvadd 19716
Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablinvadd.b 𝐵 = (Base‘𝐺)
ablinvadd.p + = (+g𝐺)
ablinvadd.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
ablinvadd ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑋) + (𝑁𝑌)))

Proof of Theorem ablinvadd
StepHypRef Expression
1 ablgrp 19694 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2 ablinvadd.b . . . 4 𝐵 = (Base‘𝐺)
3 ablinvadd.p . . . 4 + = (+g𝐺)
4 ablinvadd.n . . . 4 𝑁 = (invg𝐺)
52, 3, 4grpinvadd 18937 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
61, 5syl3an1 1163 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
7 simp1 1136 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Abel)
813ad2ant1 1133 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
9 simp2 1137 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
102, 4grpinvcl 18908 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
118, 9, 10syl2anc 584 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑋) ∈ 𝐵)
12 simp3 1138 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
132, 4grpinvcl 18908 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
148, 12, 13syl2anc 584 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
152, 3ablcom 19708 . . 3 ((𝐺 ∈ Abel ∧ (𝑁𝑋) ∈ 𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → ((𝑁𝑋) + (𝑁𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
167, 11, 14, 15syl3anc 1371 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) + (𝑁𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
176, 16eqtr4d 2775 1 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑋) + (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  cfv 6543  (class class class)co 7411  Basecbs 17148  +gcplusg 17201  Grpcgrp 18855  invgcminusg 18856  Abelcabl 19690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-riota 7367  df-ov 7414  df-0g 17391  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-cmn 19691  df-abl 19692
This theorem is referenced by:  ablsub4  19719  mulgdi  19735  invghm  19742  lmodnegadd  20665  lflnegcl  38248  baerlem3lem1  40881
  Copyright terms: Public domain W3C validator