MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablinvadd Structured version   Visualization version   GIF version

Theorem ablinvadd 19399
Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablinvadd.b 𝐵 = (Base‘𝐺)
ablinvadd.p + = (+g𝐺)
ablinvadd.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
ablinvadd ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑋) + (𝑁𝑌)))

Proof of Theorem ablinvadd
StepHypRef Expression
1 ablgrp 19379 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2 ablinvadd.b . . . 4 𝐵 = (Base‘𝐺)
3 ablinvadd.p . . . 4 + = (+g𝐺)
4 ablinvadd.n . . . 4 𝑁 = (invg𝐺)
52, 3, 4grpinvadd 18641 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
61, 5syl3an1 1162 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
7 simp1 1135 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Abel)
813ad2ant1 1132 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
9 simp2 1136 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
102, 4grpinvcl 18615 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
118, 9, 10syl2anc 584 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑋) ∈ 𝐵)
12 simp3 1137 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
132, 4grpinvcl 18615 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
148, 12, 13syl2anc 584 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
152, 3ablcom 19392 . . 3 ((𝐺 ∈ Abel ∧ (𝑁𝑋) ∈ 𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → ((𝑁𝑋) + (𝑁𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
167, 11, 14, 15syl3anc 1370 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) + (𝑁𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
176, 16eqtr4d 2781 1 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑋) + (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cfv 6427  (class class class)co 7268  Basecbs 16900  +gcplusg 16950  Grpcgrp 18565  invgcminusg 18566  Abelcabl 19375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-fv 6435  df-riota 7225  df-ov 7271  df-0g 17140  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-grp 18568  df-minusg 18569  df-cmn 19376  df-abl 19377
This theorem is referenced by:  ablsub4  19402  mulgdi  19416  invghm  19423  lmodnegadd  20160  lflnegcl  37075  baerlem3lem1  39707
  Copyright terms: Public domain W3C validator