Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablinvadd | Structured version Visualization version GIF version |
Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
ablinvadd.b | ⊢ 𝐵 = (Base‘𝐺) |
ablinvadd.p | ⊢ + = (+g‘𝐺) |
ablinvadd.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
ablinvadd | ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑋) + (𝑁‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablgrp 19379 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
2 | ablinvadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | ablinvadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
4 | ablinvadd.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
5 | 2, 3, 4 | grpinvadd 18641 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
6 | 1, 5 | syl3an1 1162 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
7 | simp1 1135 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Abel) | |
8 | 1 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Grp) |
9 | simp2 1136 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | 2, 4 | grpinvcl 18615 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
11 | 8, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
12 | simp3 1137 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
13 | 2, 4 | grpinvcl 18615 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
14 | 8, 12, 13 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
15 | 2, 3 | ablcom 19392 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → ((𝑁‘𝑋) + (𝑁‘𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
16 | 7, 11, 14, 15 | syl3anc 1370 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) + (𝑁‘𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
17 | 6, 16 | eqtr4d 2781 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑋) + (𝑁‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6427 (class class class)co 7268 Basecbs 16900 +gcplusg 16950 Grpcgrp 18565 invgcminusg 18566 Abelcabl 19375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-fv 6435 df-riota 7225 df-ov 7271 df-0g 17140 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-grp 18568 df-minusg 18569 df-cmn 19376 df-abl 19377 |
This theorem is referenced by: ablsub4 19402 mulgdi 19416 invghm 19423 lmodnegadd 20160 lflnegcl 37075 baerlem3lem1 39707 |
Copyright terms: Public domain | W3C validator |