MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablinvadd Structured version   Visualization version   GIF version

Theorem ablinvadd 19779
Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablinvadd.b 𝐵 = (Base‘𝐺)
ablinvadd.p + = (+g𝐺)
ablinvadd.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
ablinvadd ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑋) + (𝑁𝑌)))

Proof of Theorem ablinvadd
StepHypRef Expression
1 ablgrp 19757 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2 ablinvadd.b . . . 4 𝐵 = (Base‘𝐺)
3 ablinvadd.p . . . 4 + = (+g𝐺)
4 ablinvadd.n . . . 4 𝑁 = (invg𝐺)
52, 3, 4grpinvadd 18987 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
61, 5syl3an1 1160 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
7 simp1 1133 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Abel)
813ad2ant1 1130 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
9 simp2 1134 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
102, 4grpinvcl 18957 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
118, 9, 10syl2anc 582 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑋) ∈ 𝐵)
12 simp3 1135 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
132, 4grpinvcl 18957 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
148, 12, 13syl2anc 582 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
152, 3ablcom 19771 . . 3 ((𝐺 ∈ Abel ∧ (𝑁𝑋) ∈ 𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → ((𝑁𝑋) + (𝑁𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
167, 11, 14, 15syl3anc 1368 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑋) + (𝑁𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
176, 16eqtr4d 2768 1 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑋) + (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17188  +gcplusg 17241  Grpcgrp 18903  invgcminusg 18904  Abelcabl 19753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-riota 7375  df-ov 7422  df-0g 17431  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-grp 18906  df-minusg 18907  df-cmn 19754  df-abl 19755
This theorem is referenced by:  ablsub4  19782  mulgdi  19798  invghm  19805  lmodnegadd  20811  lflnegcl  38679  baerlem3lem1  41312
  Copyright terms: Public domain W3C validator