![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablinvadd | Structured version Visualization version GIF version |
Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
ablinvadd.b | ⊢ 𝐵 = (Base‘𝐺) |
ablinvadd.p | ⊢ + = (+g‘𝐺) |
ablinvadd.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
ablinvadd | ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑋) + (𝑁‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablgrp 19694 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
2 | ablinvadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | ablinvadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
4 | ablinvadd.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
5 | 2, 3, 4 | grpinvadd 18937 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
6 | 1, 5 | syl3an1 1163 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
7 | simp1 1136 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Abel) | |
8 | 1 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Grp) |
9 | simp2 1137 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | 2, 4 | grpinvcl 18908 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
11 | 8, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
12 | simp3 1138 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
13 | 2, 4 | grpinvcl 18908 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
14 | 8, 12, 13 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
15 | 2, 3 | ablcom 19708 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → ((𝑁‘𝑋) + (𝑁‘𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
16 | 7, 11, 14, 15 | syl3anc 1371 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) + (𝑁‘𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
17 | 6, 16 | eqtr4d 2775 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑋) + (𝑁‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6543 (class class class)co 7411 Basecbs 17148 +gcplusg 17201 Grpcgrp 18855 invgcminusg 18856 Abelcabl 19690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-riota 7367 df-ov 7414 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-cmn 19691 df-abl 19692 |
This theorem is referenced by: ablsub4 19719 mulgdi 19735 invghm 19742 lmodnegadd 20665 lflnegcl 38248 baerlem3lem1 40881 |
Copyright terms: Public domain | W3C validator |