![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablinvadd | Structured version Visualization version GIF version |
Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
ablinvadd.b | ⊢ 𝐵 = (Base‘𝐺) |
ablinvadd.p | ⊢ + = (+g‘𝐺) |
ablinvadd.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
ablinvadd | ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑋) + (𝑁‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablgrp 19757 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
2 | ablinvadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | ablinvadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
4 | ablinvadd.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
5 | 2, 3, 4 | grpinvadd 18987 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
6 | 1, 5 | syl3an1 1160 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
7 | simp1 1133 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Abel) | |
8 | 1 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ Grp) |
9 | simp2 1134 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | 2, 4 | grpinvcl 18957 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
11 | 8, 9, 10 | syl2anc 582 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
12 | simp3 1135 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
13 | 2, 4 | grpinvcl 18957 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
14 | 8, 12, 13 | syl2anc 582 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
15 | 2, 3 | ablcom 19771 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → ((𝑁‘𝑋) + (𝑁‘𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
16 | 7, 11, 14, 15 | syl3anc 1368 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) + (𝑁‘𝑌)) = ((𝑁‘𝑌) + (𝑁‘𝑋))) |
17 | 6, 16 | eqtr4d 2768 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑋) + (𝑁‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 Basecbs 17188 +gcplusg 17241 Grpcgrp 18903 invgcminusg 18904 Abelcabl 19753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-riota 7375 df-ov 7422 df-0g 17431 df-mgm 18608 df-sgrp 18687 df-mnd 18703 df-grp 18906 df-minusg 18907 df-cmn 19754 df-abl 19755 |
This theorem is referenced by: ablsub4 19782 mulgdi 19798 invghm 19805 lmodnegadd 20811 lflnegcl 38679 baerlem3lem1 41312 |
Copyright terms: Public domain | W3C validator |