MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablnnncan Structured version   Visualization version   GIF version

Theorem ablnnncan 18940
Description: Cancellation law for group subtraction. (nnncan 10914 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
ablsub32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablnnncan (𝜑 → ((𝑋 (𝑌 𝑍)) 𝑍) = (𝑋 𝑌))

Proof of Theorem ablnnncan
StepHypRef Expression
1 ablnncan.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2801 . . 3 (+g𝐺) = (+g𝐺)
3 ablnncan.m . . 3 = (-g𝐺)
4 ablnncan.g . . 3 (𝜑𝐺 ∈ Abel)
5 ablnncan.x . . 3 (𝜑𝑋𝐵)
6 ablgrp 18907 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
74, 6syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
8 ablnncan.y . . . 4 (𝜑𝑌𝐵)
9 ablsub32.z . . . 4 (𝜑𝑍𝐵)
101, 3grpsubcl 18175 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
117, 8, 9, 10syl3anc 1368 . . 3 (𝜑 → (𝑌 𝑍) ∈ 𝐵)
121, 2, 3, 4, 5, 11, 9ablsubsub4 18936 . 2 (𝜑 → ((𝑋 (𝑌 𝑍)) 𝑍) = (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)))
131, 2ablcom 18920 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑌 𝑍) ∈ 𝐵𝑍𝐵) → ((𝑌 𝑍)(+g𝐺)𝑍) = (𝑍(+g𝐺)(𝑌 𝑍)))
144, 11, 9, 13syl3anc 1368 . . . 4 (𝜑 → ((𝑌 𝑍)(+g𝐺)𝑍) = (𝑍(+g𝐺)(𝑌 𝑍)))
151, 2, 3ablpncan3 18934 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑍𝐵𝑌𝐵)) → (𝑍(+g𝐺)(𝑌 𝑍)) = 𝑌)
164, 9, 8, 15syl12anc 835 . . . 4 (𝜑 → (𝑍(+g𝐺)(𝑌 𝑍)) = 𝑌)
1714, 16eqtrd 2836 . . 3 (𝜑 → ((𝑌 𝑍)(+g𝐺)𝑍) = 𝑌)
1817oveq2d 7155 . 2 (𝜑 → (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)) = (𝑋 𝑌))
1912, 18eqtrd 2836 1 (𝜑 → ((𝑋 (𝑌 𝑍)) 𝑍) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  cfv 6328  (class class class)co 7139  Basecbs 16479  +gcplusg 16561  Grpcgrp 18099  -gcsg 18101  Abelcabl 18903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-sbg 18104  df-cmn 18904  df-abl 18905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator