Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablnnncan | Structured version Visualization version GIF version |
Description: Cancellation law for group subtraction. (nnncan 11186 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.) |
Ref | Expression |
---|---|
ablnncan.b | ⊢ 𝐵 = (Base‘𝐺) |
ablnncan.m | ⊢ − = (-g‘𝐺) |
ablnncan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablnncan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablnncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsub32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablnnncan | ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablnncan.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | ablnncan.m | . . 3 ⊢ − = (-g‘𝐺) | |
4 | ablnncan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
5 | ablnncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | ablgrp 19306 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
8 | ablnncan.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | ablsub32.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
10 | 1, 3 | grpsubcl 18570 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) ∈ 𝐵) |
11 | 7, 8, 9, 10 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) ∈ 𝐵) |
12 | 1, 2, 3, 4, 5, 11, 9 | ablsubsub4 19335 | . 2 ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − ((𝑌 − 𝑍)(+g‘𝐺)𝑍))) |
13 | 1, 2 | ablcom 19319 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑌 − 𝑍) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)(𝑌 − 𝑍))) |
14 | 4, 11, 9, 13 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)(𝑌 − 𝑍))) |
15 | 1, 2, 3 | ablpncan3 19333 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑍(+g‘𝐺)(𝑌 − 𝑍)) = 𝑌) |
16 | 4, 9, 8, 15 | syl12anc 833 | . . . 4 ⊢ (𝜑 → (𝑍(+g‘𝐺)(𝑌 − 𝑍)) = 𝑌) |
17 | 14, 16 | eqtrd 2778 | . . 3 ⊢ (𝜑 → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = 𝑌) |
18 | 17 | oveq2d 7271 | . 2 ⊢ (𝜑 → (𝑋 − ((𝑌 − 𝑍)(+g‘𝐺)𝑍)) = (𝑋 − 𝑌)) |
19 | 12, 18 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Grpcgrp 18492 -gcsg 18494 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-cmn 19303 df-abl 19304 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |