![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablnnncan | Structured version Visualization version GIF version |
Description: Cancellation law for group subtraction. (nnncan 10724 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.) |
Ref | Expression |
---|---|
ablnncan.b | ⊢ 𝐵 = (Base‘𝐺) |
ablnncan.m | ⊢ − = (-g‘𝐺) |
ablnncan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablnncan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablnncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsub32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablnnncan | ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablnncan.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2778 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | ablnncan.m | . . 3 ⊢ − = (-g‘𝐺) | |
4 | ablnncan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
5 | ablnncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | ablgrp 18674 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
8 | ablnncan.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | ablsub32.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
10 | 1, 3 | grpsubcl 17969 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) ∈ 𝐵) |
11 | 7, 8, 9, 10 | syl3anc 1351 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) ∈ 𝐵) |
12 | 1, 2, 3, 4, 5, 11, 9 | ablsubsub4 18700 | . 2 ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − ((𝑌 − 𝑍)(+g‘𝐺)𝑍))) |
13 | 1, 2 | ablcom 18686 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑌 − 𝑍) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)(𝑌 − 𝑍))) |
14 | 4, 11, 9, 13 | syl3anc 1351 | . . . 4 ⊢ (𝜑 → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)(𝑌 − 𝑍))) |
15 | 1, 2, 3 | ablpncan3 18698 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑍(+g‘𝐺)(𝑌 − 𝑍)) = 𝑌) |
16 | 4, 9, 8, 15 | syl12anc 824 | . . . 4 ⊢ (𝜑 → (𝑍(+g‘𝐺)(𝑌 − 𝑍)) = 𝑌) |
17 | 14, 16 | eqtrd 2814 | . . 3 ⊢ (𝜑 → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = 𝑌) |
18 | 17 | oveq2d 6994 | . 2 ⊢ (𝜑 → (𝑋 − ((𝑌 − 𝑍)(+g‘𝐺)𝑍)) = (𝑋 − 𝑌)) |
19 | 12, 18 | eqtrd 2814 | 1 ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ‘cfv 6190 (class class class)co 6978 Basecbs 16342 +gcplusg 16424 Grpcgrp 17894 -gcsg 17896 Abelcabl 18670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-id 5313 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-1st 7503 df-2nd 7504 df-0g 16574 df-mgm 17713 df-sgrp 17755 df-mnd 17766 df-grp 17897 df-minusg 17898 df-sbg 17899 df-cmn 18671 df-abl 18672 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |