MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablnnncan Structured version   Visualization version   GIF version

Theorem ablnnncan 19728
Description: Cancellation law for group subtraction. (nnncan 11433 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
ablsub32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablnnncan (𝜑 → ((𝑋 (𝑌 𝑍)) 𝑍) = (𝑋 𝑌))

Proof of Theorem ablnnncan
StepHypRef Expression
1 ablnncan.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2729 . . 3 (+g𝐺) = (+g𝐺)
3 ablnncan.m . . 3 = (-g𝐺)
4 ablnncan.g . . 3 (𝜑𝐺 ∈ Abel)
5 ablnncan.x . . 3 (𝜑𝑋𝐵)
6 ablgrp 19691 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
74, 6syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
8 ablnncan.y . . . 4 (𝜑𝑌𝐵)
9 ablsub32.z . . . 4 (𝜑𝑍𝐵)
101, 3grpsubcl 18928 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
117, 8, 9, 10syl3anc 1373 . . 3 (𝜑 → (𝑌 𝑍) ∈ 𝐵)
121, 2, 3, 4, 5, 11, 9ablsubsub4 19724 . 2 (𝜑 → ((𝑋 (𝑌 𝑍)) 𝑍) = (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)))
131, 2ablcom 19705 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑌 𝑍) ∈ 𝐵𝑍𝐵) → ((𝑌 𝑍)(+g𝐺)𝑍) = (𝑍(+g𝐺)(𝑌 𝑍)))
144, 11, 9, 13syl3anc 1373 . . . 4 (𝜑 → ((𝑌 𝑍)(+g𝐺)𝑍) = (𝑍(+g𝐺)(𝑌 𝑍)))
151, 2, 3ablpncan3 19722 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑍𝐵𝑌𝐵)) → (𝑍(+g𝐺)(𝑌 𝑍)) = 𝑌)
164, 9, 8, 15syl12anc 836 . . . 4 (𝜑 → (𝑍(+g𝐺)(𝑌 𝑍)) = 𝑌)
1714, 16eqtrd 2764 . . 3 (𝜑 → ((𝑌 𝑍)(+g𝐺)𝑍) = 𝑌)
1817oveq2d 7385 . 2 (𝜑 → (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)) = (𝑋 𝑌))
1912, 18eqtrd 2764 1 (𝜑 → ((𝑋 (𝑌 𝑍)) 𝑍) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Grpcgrp 18841  -gcsg 18843  Abelcabl 19687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-cmn 19688  df-abl 19689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator