Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablnnncan | Structured version Visualization version GIF version |
Description: Cancellation law for group subtraction. (nnncan 11256 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.) |
Ref | Expression |
---|---|
ablnncan.b | ⊢ 𝐵 = (Base‘𝐺) |
ablnncan.m | ⊢ − = (-g‘𝐺) |
ablnncan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablnncan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ablnncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ablsub32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ablnnncan | ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablnncan.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | ablnncan.m | . . 3 ⊢ − = (-g‘𝐺) | |
4 | ablnncan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
5 | ablnncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | ablgrp 19391 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
8 | ablnncan.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | ablsub32.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
10 | 1, 3 | grpsubcl 18655 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) ∈ 𝐵) |
11 | 7, 8, 9, 10 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) ∈ 𝐵) |
12 | 1, 2, 3, 4, 5, 11, 9 | ablsubsub4 19420 | . 2 ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − ((𝑌 − 𝑍)(+g‘𝐺)𝑍))) |
13 | 1, 2 | ablcom 19404 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑌 − 𝑍) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)(𝑌 − 𝑍))) |
14 | 4, 11, 9, 13 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)(𝑌 − 𝑍))) |
15 | 1, 2, 3 | ablpncan3 19418 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑍(+g‘𝐺)(𝑌 − 𝑍)) = 𝑌) |
16 | 4, 9, 8, 15 | syl12anc 834 | . . . 4 ⊢ (𝜑 → (𝑍(+g‘𝐺)(𝑌 − 𝑍)) = 𝑌) |
17 | 14, 16 | eqtrd 2778 | . . 3 ⊢ (𝜑 → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = 𝑌) |
18 | 17 | oveq2d 7291 | . 2 ⊢ (𝜑 → (𝑋 − ((𝑌 − 𝑍)(+g‘𝐺)𝑍)) = (𝑋 − 𝑌)) |
19 | 12, 18 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Grpcgrp 18577 -gcsg 18579 Abelcabl 19387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-cmn 19388 df-abl 19389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |