| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablnnncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for group subtraction. (nnncan 11457 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.) |
| Ref | Expression |
|---|---|
| ablnncan.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablnncan.m | ⊢ − = (-g‘𝐺) |
| ablnncan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablnncan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ablnncan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| ablsub32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ablnnncan | ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablnncan.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | ablnncan.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 4 | ablnncan.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 5 | ablnncan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | ablgrp 19715 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 8 | ablnncan.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | ablsub32.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 10 | 1, 3 | grpsubcl 18952 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) ∈ 𝐵) |
| 11 | 7, 8, 9, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) ∈ 𝐵) |
| 12 | 1, 2, 3, 4, 5, 11, 9 | ablsubsub4 19748 | . 2 ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − ((𝑌 − 𝑍)(+g‘𝐺)𝑍))) |
| 13 | 1, 2 | ablcom 19729 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑌 − 𝑍) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)(𝑌 − 𝑍))) |
| 14 | 4, 11, 9, 13 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = (𝑍(+g‘𝐺)(𝑌 − 𝑍))) |
| 15 | 1, 2, 3 | ablpncan3 19746 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ (𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑍(+g‘𝐺)(𝑌 − 𝑍)) = 𝑌) |
| 16 | 4, 9, 8, 15 | syl12anc 836 | . . . 4 ⊢ (𝜑 → (𝑍(+g‘𝐺)(𝑌 − 𝑍)) = 𝑌) |
| 17 | 14, 16 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((𝑌 − 𝑍)(+g‘𝐺)𝑍) = 𝑌) |
| 18 | 17 | oveq2d 7403 | . 2 ⊢ (𝜑 → (𝑋 − ((𝑌 − 𝑍)(+g‘𝐺)𝑍)) = (𝑋 − 𝑌)) |
| 19 | 12, 18 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Grpcgrp 18865 -gcsg 18867 Abelcabl 19711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-cmn 19712 df-abl 19713 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |