MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablnnncan Structured version   Visualization version   GIF version

Theorem ablnnncan 18942
Description: Cancellation law for group subtraction. (nnncan 10920 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.)
Hypotheses
Ref Expression
ablnncan.b 𝐵 = (Base‘𝐺)
ablnncan.m = (-g𝐺)
ablnncan.g (𝜑𝐺 ∈ Abel)
ablnncan.x (𝜑𝑋𝐵)
ablnncan.y (𝜑𝑌𝐵)
ablsub32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ablnnncan (𝜑 → ((𝑋 (𝑌 𝑍)) 𝑍) = (𝑋 𝑌))

Proof of Theorem ablnnncan
StepHypRef Expression
1 ablnncan.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2821 . . 3 (+g𝐺) = (+g𝐺)
3 ablnncan.m . . 3 = (-g𝐺)
4 ablnncan.g . . 3 (𝜑𝐺 ∈ Abel)
5 ablnncan.x . . 3 (𝜑𝑋𝐵)
6 ablgrp 18910 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
74, 6syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
8 ablnncan.y . . . 4 (𝜑𝑌𝐵)
9 ablsub32.z . . . 4 (𝜑𝑍𝐵)
101, 3grpsubcl 18178 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
117, 8, 9, 10syl3anc 1367 . . 3 (𝜑 → (𝑌 𝑍) ∈ 𝐵)
121, 2, 3, 4, 5, 11, 9ablsubsub4 18938 . 2 (𝜑 → ((𝑋 (𝑌 𝑍)) 𝑍) = (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)))
131, 2ablcom 18923 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑌 𝑍) ∈ 𝐵𝑍𝐵) → ((𝑌 𝑍)(+g𝐺)𝑍) = (𝑍(+g𝐺)(𝑌 𝑍)))
144, 11, 9, 13syl3anc 1367 . . . 4 (𝜑 → ((𝑌 𝑍)(+g𝐺)𝑍) = (𝑍(+g𝐺)(𝑌 𝑍)))
151, 2, 3ablpncan3 18936 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑍𝐵𝑌𝐵)) → (𝑍(+g𝐺)(𝑌 𝑍)) = 𝑌)
164, 9, 8, 15syl12anc 834 . . . 4 (𝜑 → (𝑍(+g𝐺)(𝑌 𝑍)) = 𝑌)
1714, 16eqtrd 2856 . . 3 (𝜑 → ((𝑌 𝑍)(+g𝐺)𝑍) = 𝑌)
1817oveq2d 7171 . 2 (𝜑 → (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)) = (𝑋 𝑌))
1912, 18eqtrd 2856 1 (𝜑 → ((𝑋 (𝑌 𝑍)) 𝑍) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cfv 6354  (class class class)co 7155  Basecbs 16482  +gcplusg 16564  Grpcgrp 18102  -gcsg 18104  Abelcabl 18906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-sbg 18107  df-cmn 18907  df-abl 18908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator