Proof of Theorem isvciOLD
Step | Hyp | Ref
| Expression |
1 | | isvciOLD.8 |
. 2
⊢ 𝑊 = 〈𝐺, 𝑆〉 |
2 | | isvciOLD.1 |
. . 3
⊢ 𝐺 ∈ AbelOp |
3 | | isvciOLD.3 |
. . 3
⊢ 𝑆:(ℂ × 𝑋)⟶𝑋 |
4 | | isvciOLD.4 |
. . . . 5
⊢ (𝑥 ∈ 𝑋 → (1𝑆𝑥) = 𝑥) |
5 | | isvciOLD.5 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))) |
6 | 5 | 3com12 1122 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))) |
7 | 6 | 3expa 1117 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))) |
8 | 7 | ralrimiva 3103 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) → ∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧))) |
9 | | isvciOLD.6 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥))) |
10 | | isvciOLD.7 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))) |
11 | 9, 10 | jca 512 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) |
12 | 11 | 3comr 1124 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) |
13 | 12 | 3expa 1117 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) |
14 | 13 | ralrimiva 3103 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) → ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))) |
15 | 8, 14 | jca 512 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) → (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) |
16 | 15 | ralrimiva 3103 |
. . . . 5
⊢ (𝑥 ∈ 𝑋 → ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) |
17 | 4, 16 | jca 512 |
. . . 4
⊢ (𝑥 ∈ 𝑋 → ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) |
18 | 17 | rgen 3074 |
. . 3
⊢
∀𝑥 ∈
𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))) |
19 | | ablogrpo 28909 |
. . . . . 6
⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
20 | 2, 19 | ax-mp 5 |
. . . . 5
⊢ 𝐺 ∈ GrpOp |
21 | | isvciOLD.2 |
. . . . 5
⊢ dom 𝐺 = (𝑋 × 𝑋) |
22 | 20, 21 | grporn 28883 |
. . . 4
⊢ 𝑋 = ran 𝐺 |
23 | 22 | isvcOLD 28941 |
. . 3
⊢
(〈𝐺, 𝑆〉 ∈ CVecOLD
↔ (𝐺 ∈ AbelOp
∧ 𝑆:(ℂ ×
𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
24 | 2, 3, 18, 23 | mpbir3an 1340 |
. 2
⊢
〈𝐺, 𝑆〉 ∈
CVecOLD |
25 | 1, 24 | eqeltri 2835 |
1
⊢ 𝑊 ∈
CVecOLD |