MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvciOLD Structured version   Visualization version   GIF version

Theorem isvciOLD 30599
Description: Properties that determine a complex vector space. (Contributed by NM, 5-Nov-2006.) Obsolete version of iscvsi 25162. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
isvciOLD.1 𝐺 ∈ AbelOp
isvciOLD.2 dom 𝐺 = (𝑋 × 𝑋)
isvciOLD.3 𝑆:(ℂ × 𝑋)⟶𝑋
isvciOLD.4 (𝑥𝑋 → (1𝑆𝑥) = 𝑥)
isvciOLD.5 ((𝑦 ∈ ℂ ∧ 𝑥𝑋𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
isvciOLD.6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))
isvciOLD.7 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
isvciOLD.8 𝑊 = ⟨𝐺, 𝑆
Assertion
Ref Expression
isvciOLD 𝑊 ∈ CVecOLD
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem isvciOLD
StepHypRef Expression
1 isvciOLD.8 . 2 𝑊 = ⟨𝐺, 𝑆
2 isvciOLD.1 . . 3 𝐺 ∈ AbelOp
3 isvciOLD.3 . . 3 𝑆:(ℂ × 𝑋)⟶𝑋
4 isvciOLD.4 . . . . 5 (𝑥𝑋 → (1𝑆𝑥) = 𝑥)
5 isvciOLD.5 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥𝑋𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
653com12 1124 . . . . . . . . 9 ((𝑥𝑋𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
763expa 1119 . . . . . . . 8 (((𝑥𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
87ralrimiva 3146 . . . . . . 7 ((𝑥𝑋𝑦 ∈ ℂ) → ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
9 isvciOLD.6 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))
10 isvciOLD.7 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
119, 10jca 511 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
12113comr 1126 . . . . . . . . 9 ((𝑥𝑋𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
13123expa 1119 . . . . . . . 8 (((𝑥𝑋𝑦 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
1413ralrimiva 3146 . . . . . . 7 ((𝑥𝑋𝑦 ∈ ℂ) → ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
158, 14jca 511 . . . . . 6 ((𝑥𝑋𝑦 ∈ ℂ) → (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
1615ralrimiva 3146 . . . . 5 (𝑥𝑋 → ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
174, 16jca 511 . . . 4 (𝑥𝑋 → ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))
1817rgen 3063 . . 3 𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
19 ablogrpo 30566 . . . . . 6 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
202, 19ax-mp 5 . . . . 5 𝐺 ∈ GrpOp
21 isvciOLD.2 . . . . 5 dom 𝐺 = (𝑋 × 𝑋)
2220, 21grporn 30540 . . . 4 𝑋 = ran 𝐺
2322isvcOLD 30598 . . 3 (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
242, 3, 18, 23mpbir3an 1342 . 2 𝐺, 𝑆⟩ ∈ CVecOLD
251, 24eqeltri 2837 1 𝑊 ∈ CVecOLD
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cop 4632   × cxp 5683  dom cdm 5685  wf 6557  (class class class)co 7431  cc 11153  1c1 11156   + caddc 11158   · cmul 11160  GrpOpcgr 30508  AbelOpcablo 30563  CVecOLDcvc 30577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-grpo 30512  df-ablo 30564  df-vc 30578
This theorem is referenced by:  cncvcOLD  30602  hilvc  31181  hhssnv  31283
  Copyright terms: Public domain W3C validator