MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvciOLD Structured version   Visualization version   GIF version

Theorem isvciOLD 30516
Description: Properties that determine a complex vector space. (Contributed by NM, 5-Nov-2006.) Obsolete version of iscvsi 25036. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
isvciOLD.1 𝐺 ∈ AbelOp
isvciOLD.2 dom 𝐺 = (𝑋 × 𝑋)
isvciOLD.3 𝑆:(ℂ × 𝑋)⟶𝑋
isvciOLD.4 (𝑥𝑋 → (1𝑆𝑥) = 𝑥)
isvciOLD.5 ((𝑦 ∈ ℂ ∧ 𝑥𝑋𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
isvciOLD.6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))
isvciOLD.7 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
isvciOLD.8 𝑊 = ⟨𝐺, 𝑆
Assertion
Ref Expression
isvciOLD 𝑊 ∈ CVecOLD
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem isvciOLD
StepHypRef Expression
1 isvciOLD.8 . 2 𝑊 = ⟨𝐺, 𝑆
2 isvciOLD.1 . . 3 𝐺 ∈ AbelOp
3 isvciOLD.3 . . 3 𝑆:(ℂ × 𝑋)⟶𝑋
4 isvciOLD.4 . . . . 5 (𝑥𝑋 → (1𝑆𝑥) = 𝑥)
5 isvciOLD.5 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥𝑋𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
653com12 1123 . . . . . . . . 9 ((𝑥𝑋𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
763expa 1118 . . . . . . . 8 (((𝑥𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
87ralrimiva 3126 . . . . . . 7 ((𝑥𝑋𝑦 ∈ ℂ) → ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
9 isvciOLD.6 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))
10 isvciOLD.7 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
119, 10jca 511 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
12113comr 1125 . . . . . . . . 9 ((𝑥𝑋𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
13123expa 1118 . . . . . . . 8 (((𝑥𝑋𝑦 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
1413ralrimiva 3126 . . . . . . 7 ((𝑥𝑋𝑦 ∈ ℂ) → ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
158, 14jca 511 . . . . . 6 ((𝑥𝑋𝑦 ∈ ℂ) → (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
1615ralrimiva 3126 . . . . 5 (𝑥𝑋 → ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
174, 16jca 511 . . . 4 (𝑥𝑋 → ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))
1817rgen 3047 . . 3 𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
19 ablogrpo 30483 . . . . . 6 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
202, 19ax-mp 5 . . . . 5 𝐺 ∈ GrpOp
21 isvciOLD.2 . . . . 5 dom 𝐺 = (𝑋 × 𝑋)
2220, 21grporn 30457 . . . 4 𝑋 = ran 𝐺
2322isvcOLD 30515 . . 3 (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
242, 3, 18, 23mpbir3an 1342 . 2 𝐺, 𝑆⟩ ∈ CVecOLD
251, 24eqeltri 2825 1 𝑊 ∈ CVecOLD
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cop 4598   × cxp 5639  dom cdm 5641  wf 6510  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078   · cmul 11080  GrpOpcgr 30425  AbelOpcablo 30480  CVecOLDcvc 30494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-grpo 30429  df-ablo 30481  df-vc 30495
This theorem is referenced by:  cncvcOLD  30519  hilvc  31098  hhssnv  31200
  Copyright terms: Public domain W3C validator