MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isvciOLD Structured version   Visualization version   GIF version

Theorem isvciOLD 28843
Description: Properties that determine a complex vector space. (Contributed by NM, 5-Nov-2006.) Obsolete version of iscvsi 24198. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
isvciOLD.1 𝐺 ∈ AbelOp
isvciOLD.2 dom 𝐺 = (𝑋 × 𝑋)
isvciOLD.3 𝑆:(ℂ × 𝑋)⟶𝑋
isvciOLD.4 (𝑥𝑋 → (1𝑆𝑥) = 𝑥)
isvciOLD.5 ((𝑦 ∈ ℂ ∧ 𝑥𝑋𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
isvciOLD.6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))
isvciOLD.7 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
isvciOLD.8 𝑊 = ⟨𝐺, 𝑆
Assertion
Ref Expression
isvciOLD 𝑊 ∈ CVecOLD
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem isvciOLD
StepHypRef Expression
1 isvciOLD.8 . 2 𝑊 = ⟨𝐺, 𝑆
2 isvciOLD.1 . . 3 𝐺 ∈ AbelOp
3 isvciOLD.3 . . 3 𝑆:(ℂ × 𝑋)⟶𝑋
4 isvciOLD.4 . . . . 5 (𝑥𝑋 → (1𝑆𝑥) = 𝑥)
5 isvciOLD.5 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥𝑋𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
653com12 1121 . . . . . . . . 9 ((𝑥𝑋𝑦 ∈ ℂ ∧ 𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
763expa 1116 . . . . . . . 8 (((𝑥𝑋𝑦 ∈ ℂ) ∧ 𝑧𝑋) → (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
87ralrimiva 3107 . . . . . . 7 ((𝑥𝑋𝑦 ∈ ℂ) → ∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)))
9 isvciOLD.6 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)))
10 isvciOLD.7 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))
119, 10jca 511 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
12113comr 1123 . . . . . . . . 9 ((𝑥𝑋𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
13123expa 1116 . . . . . . . 8 (((𝑥𝑋𝑦 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
1413ralrimiva 3107 . . . . . . 7 ((𝑥𝑋𝑦 ∈ ℂ) → ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))
158, 14jca 511 . . . . . 6 ((𝑥𝑋𝑦 ∈ ℂ) → (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
1615ralrimiva 3107 . . . . 5 (𝑥𝑋 → ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
174, 16jca 511 . . . 4 (𝑥𝑋 → ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))
1817rgen 3073 . . 3 𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))
19 ablogrpo 28810 . . . . . 6 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
202, 19ax-mp 5 . . . . 5 𝐺 ∈ GrpOp
21 isvciOLD.2 . . . . 5 dom 𝐺 = (𝑋 × 𝑋)
2220, 21grporn 28784 . . . 4 𝑋 = ran 𝐺
2322isvcOLD 28842 . . 3 (⟨𝐺, 𝑆⟩ ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))
242, 3, 18, 23mpbir3an 1339 . 2 𝐺, 𝑆⟩ ∈ CVecOLD
251, 24eqeltri 2835 1 𝑊 ∈ CVecOLD
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cop 4564   × cxp 5578  dom cdm 5580  wf 6414  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805   · cmul 10807  GrpOpcgr 28752  AbelOpcablo 28807  CVecOLDcvc 28821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-grpo 28756  df-ablo 28808  df-vc 28822
This theorem is referenced by:  cncvcOLD  28846  hilvc  29425  hhssnv  29527
  Copyright terms: Public domain W3C validator