Proof of Theorem ablodivdiv4
Step | Hyp | Ref
| Expression |
1 | | ablogrpo 28810 |
. . 3
⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
2 | | simpl 482 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐺 ∈ GrpOp) |
3 | | abldiv.1 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
4 | | abldiv.3 |
. . . . . 6
⊢ 𝐷 = ( /𝑔
‘𝐺) |
5 | 3, 4 | grpodivcl 28802 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) |
6 | 5 | 3adant3r3 1182 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋) |
7 | | simpr3 1194 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) |
8 | | eqid 2738 |
. . . . 5
⊢
(inv‘𝐺) =
(inv‘𝐺) |
9 | 3, 8, 4 | grpodivval 28798 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴𝐷𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶))) |
10 | 2, 6, 7, 9 | syl3anc 1369 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶))) |
11 | 1, 10 | sylan 579 |
. 2
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶))) |
12 | | simpr1 1192 |
. . . 4
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
13 | | simpr2 1193 |
. . . 4
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
14 | | simp3 1136 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ 𝑋) |
15 | 3, 8 | grpoinvcl 28787 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋) |
16 | 1, 14, 15 | syl2an 595 |
. . . 4
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋) |
17 | 12, 13, 16 | 3jca 1126 |
. . 3
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)) |
18 | 3, 4 | ablodivdiv 28816 |
. . 3
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷((inv‘𝐺)‘𝐶))) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶))) |
19 | 17, 18 | syldan 590 |
. 2
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷((inv‘𝐺)‘𝐶))) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶))) |
20 | 3, 8, 4 | grpodivinv 28799 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐷((inv‘𝐺)‘𝐶)) = (𝐵𝐺𝐶)) |
21 | 1, 20 | syl3an1 1161 |
. . . 4
⊢ ((𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐷((inv‘𝐺)‘𝐶)) = (𝐵𝐺𝐶)) |
22 | 21 | 3adant3r1 1180 |
. . 3
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷((inv‘𝐺)‘𝐶)) = (𝐵𝐺𝐶)) |
23 | 22 | oveq2d 7271 |
. 2
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷((inv‘𝐺)‘𝐶))) = (𝐴𝐷(𝐵𝐺𝐶))) |
24 | 11, 19, 23 | 3eqtr2d 2784 |
1
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = (𝐴𝐷(𝐵𝐺𝐶))) |