MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablodivdiv4 Structured version   Visualization version   GIF version

Theorem ablodivdiv4 28010
Description: Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablodivdiv4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = (𝐴𝐷(𝐵𝐺𝐶)))

Proof of Theorem ablodivdiv4
StepHypRef Expression
1 ablogrpo 28003 . . 3 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
2 simpl 483 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐺 ∈ GrpOp)
3 abldiv.1 . . . . . 6 𝑋 = ran 𝐺
4 abldiv.3 . . . . . 6 𝐷 = ( /𝑔𝐺)
53, 4grpodivcl 27995 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ 𝑋)
653adant3r3 1175 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋)
7 simpr3 1187 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
8 eqid 2793 . . . . 5 (inv‘𝐺) = (inv‘𝐺)
93, 8, 4grpodivval 27991 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝐷𝐵) ∈ 𝑋𝐶𝑋) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶)))
102, 6, 7, 9syl3anc 1362 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶)))
111, 10sylan 580 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶)))
12 simpr1 1185 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
13 simpr2 1186 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
14 simp3 1129 . . . . 5 ((𝐴𝑋𝐵𝑋𝐶𝑋) → 𝐶𝑋)
153, 8grpoinvcl 27980 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
161, 14, 15syl2an 595 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
1712, 13, 163jca 1119 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋))
183, 4ablodivdiv 28009 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷((inv‘𝐺)‘𝐶))) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶)))
1917, 18syldan 591 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷((inv‘𝐺)‘𝐶))) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶)))
203, 8, 4grpodivinv 27992 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷((inv‘𝐺)‘𝐶)) = (𝐵𝐺𝐶))
211, 20syl3an1 1154 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷((inv‘𝐺)‘𝐶)) = (𝐵𝐺𝐶))
22213adant3r1 1173 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷((inv‘𝐺)‘𝐶)) = (𝐵𝐺𝐶))
2322oveq2d 7023 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐷((inv‘𝐺)‘𝐶))) = (𝐴𝐷(𝐵𝐺𝐶)))
2411, 19, 233eqtr2d 2835 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = (𝐴𝐷(𝐵𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1078   = wceq 1520  wcel 2079  ran crn 5436  cfv 6217  (class class class)co 7007  GrpOpcgr 27945  invcgn 27947   /𝑔 cgs 27948  AbelOpcablo 28000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-1st 7536  df-2nd 7537  df-grpo 27949  df-gid 27950  df-ginv 27951  df-gdiv 27952  df-ablo 28001
This theorem is referenced by:  ablodiv32  28011  ablo4pnp  34636
  Copyright terms: Public domain W3C validator