MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablodivdiv4 Structured version   Visualization version   GIF version

Theorem ablodivdiv4 29845
Description: Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔 β€˜πΊ)
Assertion
Ref Expression
ablodivdiv4 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐴𝐷𝐡)𝐷𝐢) = (𝐴𝐷(𝐡𝐺𝐢)))

Proof of Theorem ablodivdiv4
StepHypRef Expression
1 ablogrpo 29838 . . 3 (𝐺 ∈ AbelOp β†’ 𝐺 ∈ GrpOp)
2 simpl 483 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 𝐺 ∈ GrpOp)
3 abldiv.1 . . . . . 6 𝑋 = ran 𝐺
4 abldiv.3 . . . . . 6 𝐷 = ( /𝑔 β€˜πΊ)
53, 4grpodivcl 29830 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) ∈ 𝑋)
653adant3r3 1184 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ∈ 𝑋)
7 simpr3 1196 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 𝐢 ∈ 𝑋)
8 eqid 2732 . . . . 5 (invβ€˜πΊ) = (invβ€˜πΊ)
93, 8, 4grpodivval 29826 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝐷𝐡) ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ ((𝐴𝐷𝐡)𝐷𝐢) = ((𝐴𝐷𝐡)𝐺((invβ€˜πΊ)β€˜πΆ)))
102, 6, 7, 9syl3anc 1371 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐴𝐷𝐡)𝐷𝐢) = ((𝐴𝐷𝐡)𝐺((invβ€˜πΊ)β€˜πΆ)))
111, 10sylan 580 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐴𝐷𝐡)𝐷𝐢) = ((𝐴𝐷𝐡)𝐺((invβ€˜πΊ)β€˜πΆ)))
12 simpr1 1194 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 𝐴 ∈ 𝑋)
13 simpr2 1195 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 𝐡 ∈ 𝑋)
14 simp3 1138 . . . . 5 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ 𝐢 ∈ 𝑋)
153, 8grpoinvcl 29815 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐢 ∈ 𝑋) β†’ ((invβ€˜πΊ)β€˜πΆ) ∈ 𝑋)
161, 14, 15syl2an 596 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((invβ€˜πΊ)β€˜πΆ) ∈ 𝑋)
1712, 13, 163jca 1128 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ ((invβ€˜πΊ)β€˜πΆ) ∈ 𝑋))
183, 4ablodivdiv 29844 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ ((invβ€˜πΊ)β€˜πΆ) ∈ 𝑋)) β†’ (𝐴𝐷(𝐡𝐷((invβ€˜πΊ)β€˜πΆ))) = ((𝐴𝐷𝐡)𝐺((invβ€˜πΊ)β€˜πΆ)))
1917, 18syldan 591 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷(𝐡𝐷((invβ€˜πΊ)β€˜πΆ))) = ((𝐴𝐷𝐡)𝐺((invβ€˜πΊ)β€˜πΆ)))
203, 8, 4grpodivinv 29827 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ (𝐡𝐷((invβ€˜πΊ)β€˜πΆ)) = (𝐡𝐺𝐢))
211, 20syl3an1 1163 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ (𝐡𝐷((invβ€˜πΊ)β€˜πΆ)) = (𝐡𝐺𝐢))
22213adant3r1 1182 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐡𝐷((invβ€˜πΊ)β€˜πΆ)) = (𝐡𝐺𝐢))
2322oveq2d 7427 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷(𝐡𝐷((invβ€˜πΊ)β€˜πΆ))) = (𝐴𝐷(𝐡𝐺𝐢)))
2411, 19, 233eqtr2d 2778 1 ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐴𝐷𝐡)𝐷𝐢) = (𝐴𝐷(𝐡𝐺𝐢)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  ran crn 5677  β€˜cfv 6543  (class class class)co 7411  GrpOpcgr 29780  invcgn 29782   /𝑔 cgs 29783  AbelOpcablo 29835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-grpo 29784  df-gid 29785  df-ginv 29786  df-gdiv 29787  df-ablo 29836
This theorem is referenced by:  ablodiv32  29846  ablo4pnp  36840
  Copyright terms: Public domain W3C validator