Proof of Theorem ablodivdiv4
| Step | Hyp | Ref
| Expression |
| 1 | | ablogrpo 30533 |
. . 3
⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
| 2 | | simpl 482 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐺 ∈ GrpOp) |
| 3 | | abldiv.1 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
| 4 | | abldiv.3 |
. . . . . 6
⊢ 𝐷 = ( /𝑔
‘𝐺) |
| 5 | 3, 4 | grpodivcl 30525 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) |
| 6 | 5 | 3adant3r3 1185 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋) |
| 7 | | simpr3 1197 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) |
| 8 | | eqid 2736 |
. . . . 5
⊢
(inv‘𝐺) =
(inv‘𝐺) |
| 9 | 3, 8, 4 | grpodivval 30521 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴𝐷𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶))) |
| 10 | 2, 6, 7, 9 | syl3anc 1373 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶))) |
| 11 | 1, 10 | sylan 580 |
. 2
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶))) |
| 12 | | simpr1 1195 |
. . . 4
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
| 13 | | simpr2 1196 |
. . . 4
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
| 14 | | simp3 1138 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ 𝑋) |
| 15 | 3, 8 | grpoinvcl 30510 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋) |
| 16 | 1, 14, 15 | syl2an 596 |
. . . 4
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((inv‘𝐺)‘𝐶) ∈ 𝑋) |
| 17 | 12, 13, 16 | 3jca 1128 |
. . 3
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)) |
| 18 | 3, 4 | ablodivdiv 30539 |
. . 3
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷((inv‘𝐺)‘𝐶))) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶))) |
| 19 | 17, 18 | syldan 591 |
. 2
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷((inv‘𝐺)‘𝐶))) = ((𝐴𝐷𝐵)𝐺((inv‘𝐺)‘𝐶))) |
| 20 | 3, 8, 4 | grpodivinv 30522 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐷((inv‘𝐺)‘𝐶)) = (𝐵𝐺𝐶)) |
| 21 | 1, 20 | syl3an1 1163 |
. . . 4
⊢ ((𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐷((inv‘𝐺)‘𝐶)) = (𝐵𝐺𝐶)) |
| 22 | 21 | 3adant3r1 1183 |
. . 3
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷((inv‘𝐺)‘𝐶)) = (𝐵𝐺𝐶)) |
| 23 | 22 | oveq2d 7426 |
. 2
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷((inv‘𝐺)‘𝐶))) = (𝐴𝐷(𝐵𝐺𝐶))) |
| 24 | 11, 19, 23 | 3eqtr2d 2777 |
1
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = (𝐴𝐷(𝐵𝐺𝐶))) |