![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhnv | Structured version Visualization version GIF version |
Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | β’ π = β¨β¨ +β , Β·β β©, normββ© |
Ref | Expression |
---|---|
hhnv | β’ π β NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilablo 30695 | . . . 4 β’ +β β AbelOp | |
2 | ablogrpo 30082 | . . . 4 β’ ( +β β AbelOp β +β β GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 β’ +β β GrpOp |
4 | ax-hfvadd 30535 | . . . 4 β’ +β :( β Γ β)βΆ β | |
5 | 4 | fdmi 6729 | . . 3 β’ dom +β = ( β Γ β) |
6 | 3, 5 | grporn 30056 | . 2 β’ β = ran +β |
7 | hilid 30696 | . . 3 β’ (GIdβ +β ) = 0β | |
8 | 7 | eqcomi 2740 | . 2 β’ 0β = (GIdβ +β ) |
9 | hilvc 30697 | . 2 β’ β¨ +β , Β·β β© β CVecOLD | |
10 | normf 30658 | . 2 β’ normβ: ββΆβ | |
11 | norm-i 30664 | . . 3 β’ (π₯ β β β ((normββπ₯) = 0 β π₯ = 0β)) | |
12 | 11 | biimpa 476 | . 2 β’ ((π₯ β β β§ (normββπ₯) = 0) β π₯ = 0β) |
13 | norm-iii 30675 | . 2 β’ ((π¦ β β β§ π₯ β β) β (normββ(π¦ Β·β π₯)) = ((absβπ¦) Β· (normββπ₯))) | |
14 | norm-ii 30673 | . 2 β’ ((π₯ β β β§ π¦ β β) β (normββ(π₯ +β π¦)) β€ ((normββπ₯) + (normββπ¦))) | |
15 | hhnv.1 | . 2 β’ π = β¨β¨ +β , Β·β β©, normββ© | |
16 | 6, 8, 9, 10, 12, 13, 14, 15 | isnvi 30148 | 1 β’ π β NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 β wcel 2105 β¨cop 4634 Γ cxp 5674 βcfv 6543 0cc0 11116 GrpOpcgr 30024 GIdcgi 30025 AbelOpcablo 30079 NrmCVeccnv 30119 βchba 30454 +β cva 30455 Β·β csm 30456 normβcno 30458 0βc0v 30459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-hilex 30534 ax-hfvadd 30535 ax-hvcom 30536 ax-hvass 30537 ax-hv0cl 30538 ax-hvaddid 30539 ax-hfvmul 30540 ax-hvmulid 30541 ax-hvmulass 30542 ax-hvdistr1 30543 ax-hvdistr2 30544 ax-hvmul0 30545 ax-hfi 30614 ax-his1 30617 ax-his2 30618 ax-his3 30619 ax-his4 30620 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-grpo 30028 df-gid 30029 df-ablo 30080 df-vc 30094 df-nv 30127 df-hnorm 30503 df-hvsub 30506 |
This theorem is referenced by: hhva 30701 hh0v 30703 hhsm 30704 hhvs 30705 hhnm 30706 hhims 30707 hhmet 30709 hhmetdval 30711 hhip 30712 hhph 30713 hlimadd 30728 hhcau 30733 hhlm 30734 hhhl 30739 hhssabloilem 30796 hhsst 30801 hhshsslem1 30802 hhshsslem2 30803 hhsssh 30804 hhsssh2 30805 hhssvs 30807 occllem 30838 nmopsetretHIL 31399 hhlnoi 31435 hhnmoi 31436 hhbloi 31437 hh0oi 31438 nmopub2tHIL 31445 nmlnop0iHIL 31531 hmopidmchi 31686 |
Copyright terms: Public domain | W3C validator |