| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhnv | Structured version Visualization version GIF version | ||
| Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| Ref | Expression |
|---|---|
| hhnv | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilablo 31096 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
| 2 | ablogrpo 30483 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ +ℎ ∈ GrpOp |
| 4 | ax-hfvadd 30936 | . . . 4 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 5 | 4 | fdmi 6702 | . . 3 ⊢ dom +ℎ = ( ℋ × ℋ) |
| 6 | 3, 5 | grporn 30457 | . 2 ⊢ ℋ = ran +ℎ |
| 7 | hilid 31097 | . . 3 ⊢ (GId‘ +ℎ ) = 0ℎ | |
| 8 | 7 | eqcomi 2739 | . 2 ⊢ 0ℎ = (GId‘ +ℎ ) |
| 9 | hilvc 31098 | . 2 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD | |
| 10 | normf 31059 | . 2 ⊢ normℎ: ℋ⟶ℝ | |
| 11 | norm-i 31065 | . . 3 ⊢ (𝑥 ∈ ℋ → ((normℎ‘𝑥) = 0 ↔ 𝑥 = 0ℎ)) | |
| 12 | 11 | biimpa 476 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ (normℎ‘𝑥) = 0) → 𝑥 = 0ℎ) |
| 13 | norm-iii 31076 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (normℎ‘(𝑦 ·ℎ 𝑥)) = ((abs‘𝑦) · (normℎ‘𝑥))) | |
| 14 | norm-ii 31074 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (normℎ‘(𝑥 +ℎ 𝑦)) ≤ ((normℎ‘𝑥) + (normℎ‘𝑦))) | |
| 15 | hhnv.1 | . 2 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 16 | 6, 8, 9, 10, 12, 13, 14, 15 | isnvi 30549 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 〈cop 4598 × cxp 5639 ‘cfv 6514 0cc0 11075 GrpOpcgr 30425 GIdcgi 30426 AbelOpcablo 30480 NrmCVeccnv 30520 ℋchba 30855 +ℎ cva 30856 ·ℎ csm 30857 normℎcno 30859 0ℎc0v 30860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvdistr1 30944 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-grpo 30429 df-gid 30430 df-ablo 30481 df-vc 30495 df-nv 30528 df-hnorm 30904 df-hvsub 30907 |
| This theorem is referenced by: hhva 31102 hh0v 31104 hhsm 31105 hhvs 31106 hhnm 31107 hhims 31108 hhmet 31110 hhmetdval 31112 hhip 31113 hhph 31114 hlimadd 31129 hhcau 31134 hhlm 31135 hhhl 31140 hhssabloilem 31197 hhsst 31202 hhshsslem1 31203 hhshsslem2 31204 hhsssh 31205 hhsssh2 31206 hhssvs 31208 occllem 31239 nmopsetretHIL 31800 hhlnoi 31836 hhnmoi 31837 hhbloi 31838 hh0oi 31839 nmopub2tHIL 31846 nmlnop0iHIL 31932 hmopidmchi 32087 |
| Copyright terms: Public domain | W3C validator |