HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhnv Structured version   Visualization version   GIF version

Theorem hhnv 28951
Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhnv 𝑈 ∈ NrmCVec

Proof of Theorem hhnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 28946 . . . 4 + ∈ AbelOp
2 ablogrpo 28333 . . . 4 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . . 3 + ∈ GrpOp
4 ax-hfvadd 28786 . . . 4 + :( ℋ × ℋ)⟶ ℋ
54fdmi 6502 . . 3 dom + = ( ℋ × ℋ)
63, 5grporn 28307 . 2 ℋ = ran +
7 hilid 28947 . . 3 (GId‘ + ) = 0
87eqcomi 2810 . 2 0 = (GId‘ + )
9 hilvc 28948 . 2 ⟨ + , · ⟩ ∈ CVecOLD
10 normf 28909 . 2 norm: ℋ⟶ℝ
11 norm-i 28915 . . 3 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
1211biimpa 480 . 2 ((𝑥 ∈ ℋ ∧ (norm𝑥) = 0) → 𝑥 = 0)
13 norm-iii 28926 . 2 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
14 norm-ii 28924 . 2 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
15 hhnv.1 . 2 𝑈 = ⟨⟨ + , · ⟩, norm
166, 8, 9, 10, 12, 13, 14, 15isnvi 28399 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2112  cop 4534   × cxp 5521  cfv 6328  0cc0 10530  GrpOpcgr 28275  GIdcgi 28276  AbelOpcablo 28330  NrmCVeccnv 28370  chba 28705   + cva 28706   · csm 28707  normcno 28709  0c0v 28710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-hilex 28785  ax-hfvadd 28786  ax-hvcom 28787  ax-hvass 28788  ax-hv0cl 28789  ax-hvaddid 28790  ax-hfvmul 28791  ax-hvmulid 28792  ax-hvmulass 28793  ax-hvdistr1 28794  ax-hvdistr2 28795  ax-hvmul0 28796  ax-hfi 28865  ax-his1 28868  ax-his2 28869  ax-his3 28870  ax-his4 28871
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-grpo 28279  df-gid 28280  df-ablo 28331  df-vc 28345  df-nv 28378  df-hnorm 28754  df-hvsub 28757
This theorem is referenced by:  hhva  28952  hh0v  28954  hhsm  28955  hhvs  28956  hhnm  28957  hhims  28958  hhmet  28960  hhmetdval  28962  hhip  28963  hhph  28964  hlimadd  28979  hhcau  28984  hhlm  28985  hhhl  28990  hhssabloilem  29047  hhsst  29052  hhshsslem1  29053  hhshsslem2  29054  hhsssh  29055  hhsssh2  29056  hhssvs  29058  occllem  29089  nmopsetretHIL  29650  hhlnoi  29686  hhnmoi  29687  hhbloi  29688  hh0oi  29689  nmopub2tHIL  29696  nmlnop0iHIL  29782  hmopidmchi  29937
  Copyright terms: Public domain W3C validator