Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhnv | Structured version Visualization version GIF version |
Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
Ref | Expression |
---|---|
hhnv | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilablo 29501 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
2 | ablogrpo 28888 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ +ℎ ∈ GrpOp |
4 | ax-hfvadd 29341 | . . . 4 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
5 | 4 | fdmi 6608 | . . 3 ⊢ dom +ℎ = ( ℋ × ℋ) |
6 | 3, 5 | grporn 28862 | . 2 ⊢ ℋ = ran +ℎ |
7 | hilid 29502 | . . 3 ⊢ (GId‘ +ℎ ) = 0ℎ | |
8 | 7 | eqcomi 2748 | . 2 ⊢ 0ℎ = (GId‘ +ℎ ) |
9 | hilvc 29503 | . 2 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD | |
10 | normf 29464 | . 2 ⊢ normℎ: ℋ⟶ℝ | |
11 | norm-i 29470 | . . 3 ⊢ (𝑥 ∈ ℋ → ((normℎ‘𝑥) = 0 ↔ 𝑥 = 0ℎ)) | |
12 | 11 | biimpa 476 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ (normℎ‘𝑥) = 0) → 𝑥 = 0ℎ) |
13 | norm-iii 29481 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (normℎ‘(𝑦 ·ℎ 𝑥)) = ((abs‘𝑦) · (normℎ‘𝑥))) | |
14 | norm-ii 29479 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (normℎ‘(𝑥 +ℎ 𝑦)) ≤ ((normℎ‘𝑥) + (normℎ‘𝑦))) | |
15 | hhnv.1 | . 2 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
16 | 6, 8, 9, 10, 12, 13, 14, 15 | isnvi 28954 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 〈cop 4572 × cxp 5586 ‘cfv 6430 0cc0 10855 GrpOpcgr 28830 GIdcgi 28831 AbelOpcablo 28885 NrmCVeccnv 28925 ℋchba 29260 +ℎ cva 29261 ·ℎ csm 29262 normℎcno 29264 0ℎc0v 29265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-hilex 29340 ax-hfvadd 29341 ax-hvcom 29342 ax-hvass 29343 ax-hv0cl 29344 ax-hvaddid 29345 ax-hfvmul 29346 ax-hvmulid 29347 ax-hvmulass 29348 ax-hvdistr1 29349 ax-hvdistr2 29350 ax-hvmul0 29351 ax-hfi 29420 ax-his1 29423 ax-his2 29424 ax-his3 29425 ax-his4 29426 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-grpo 28834 df-gid 28835 df-ablo 28886 df-vc 28900 df-nv 28933 df-hnorm 29309 df-hvsub 29312 |
This theorem is referenced by: hhva 29507 hh0v 29509 hhsm 29510 hhvs 29511 hhnm 29512 hhims 29513 hhmet 29515 hhmetdval 29517 hhip 29518 hhph 29519 hlimadd 29534 hhcau 29539 hhlm 29540 hhhl 29545 hhssabloilem 29602 hhsst 29607 hhshsslem1 29608 hhshsslem2 29609 hhsssh 29610 hhsssh2 29611 hhssvs 29613 occllem 29644 nmopsetretHIL 30205 hhlnoi 30241 hhnmoi 30242 hhbloi 30243 hh0oi 30244 nmopub2tHIL 30251 nmlnop0iHIL 30337 hmopidmchi 30492 |
Copyright terms: Public domain | W3C validator |