Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhnv | Structured version Visualization version GIF version |
Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
Ref | Expression |
---|---|
hhnv | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilablo 29809 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
2 | ablogrpo 29196 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ +ℎ ∈ GrpOp |
4 | ax-hfvadd 29649 | . . . 4 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
5 | 4 | fdmi 6667 | . . 3 ⊢ dom +ℎ = ( ℋ × ℋ) |
6 | 3, 5 | grporn 29170 | . 2 ⊢ ℋ = ran +ℎ |
7 | hilid 29810 | . . 3 ⊢ (GId‘ +ℎ ) = 0ℎ | |
8 | 7 | eqcomi 2746 | . 2 ⊢ 0ℎ = (GId‘ +ℎ ) |
9 | hilvc 29811 | . 2 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD | |
10 | normf 29772 | . 2 ⊢ normℎ: ℋ⟶ℝ | |
11 | norm-i 29778 | . . 3 ⊢ (𝑥 ∈ ℋ → ((normℎ‘𝑥) = 0 ↔ 𝑥 = 0ℎ)) | |
12 | 11 | biimpa 478 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ (normℎ‘𝑥) = 0) → 𝑥 = 0ℎ) |
13 | norm-iii 29789 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (normℎ‘(𝑦 ·ℎ 𝑥)) = ((abs‘𝑦) · (normℎ‘𝑥))) | |
14 | norm-ii 29787 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (normℎ‘(𝑥 +ℎ 𝑦)) ≤ ((normℎ‘𝑥) + (normℎ‘𝑦))) | |
15 | hhnv.1 | . 2 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
16 | 6, 8, 9, 10, 12, 13, 14, 15 | isnvi 29262 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 〈cop 4583 × cxp 5622 ‘cfv 6483 0cc0 10976 GrpOpcgr 29138 GIdcgi 29139 AbelOpcablo 29193 NrmCVeccnv 29233 ℋchba 29568 +ℎ cva 29569 ·ℎ csm 29570 normℎcno 29572 0ℎc0v 29573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 ax-hilex 29648 ax-hfvadd 29649 ax-hvcom 29650 ax-hvass 29651 ax-hv0cl 29652 ax-hvaddid 29653 ax-hfvmul 29654 ax-hvmulid 29655 ax-hvmulass 29656 ax-hvdistr1 29657 ax-hvdistr2 29658 ax-hvmul0 29659 ax-hfi 29728 ax-his1 29731 ax-his2 29732 ax-his3 29733 ax-his4 29734 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-sup 9303 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-n0 12339 df-z 12425 df-uz 12688 df-rp 12836 df-seq 13827 df-exp 13888 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-grpo 29142 df-gid 29143 df-ablo 29194 df-vc 29208 df-nv 29241 df-hnorm 29617 df-hvsub 29620 |
This theorem is referenced by: hhva 29815 hh0v 29817 hhsm 29818 hhvs 29819 hhnm 29820 hhims 29821 hhmet 29823 hhmetdval 29825 hhip 29826 hhph 29827 hlimadd 29842 hhcau 29847 hhlm 29848 hhhl 29853 hhssabloilem 29910 hhsst 29915 hhshsslem1 29916 hhshsslem2 29917 hhsssh 29918 hhsssh2 29919 hhssvs 29921 occllem 29952 nmopsetretHIL 30513 hhlnoi 30549 hhnmoi 30550 hhbloi 30551 hh0oi 30552 nmopub2tHIL 30559 nmlnop0iHIL 30645 hmopidmchi 30800 |
Copyright terms: Public domain | W3C validator |