| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhnv | Structured version Visualization version GIF version | ||
| Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| Ref | Expression |
|---|---|
| hhnv | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilablo 31104 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
| 2 | ablogrpo 30491 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ +ℎ ∈ GrpOp |
| 4 | ax-hfvadd 30944 | . . . 4 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 5 | 4 | fdmi 6663 | . . 3 ⊢ dom +ℎ = ( ℋ × ℋ) |
| 6 | 3, 5 | grporn 30465 | . 2 ⊢ ℋ = ran +ℎ |
| 7 | hilid 31105 | . . 3 ⊢ (GId‘ +ℎ ) = 0ℎ | |
| 8 | 7 | eqcomi 2738 | . 2 ⊢ 0ℎ = (GId‘ +ℎ ) |
| 9 | hilvc 31106 | . 2 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD | |
| 10 | normf 31067 | . 2 ⊢ normℎ: ℋ⟶ℝ | |
| 11 | norm-i 31073 | . . 3 ⊢ (𝑥 ∈ ℋ → ((normℎ‘𝑥) = 0 ↔ 𝑥 = 0ℎ)) | |
| 12 | 11 | biimpa 476 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ (normℎ‘𝑥) = 0) → 𝑥 = 0ℎ) |
| 13 | norm-iii 31084 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (normℎ‘(𝑦 ·ℎ 𝑥)) = ((abs‘𝑦) · (normℎ‘𝑥))) | |
| 14 | norm-ii 31082 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (normℎ‘(𝑥 +ℎ 𝑦)) ≤ ((normℎ‘𝑥) + (normℎ‘𝑦))) | |
| 15 | hhnv.1 | . 2 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 16 | 6, 8, 9, 10, 12, 13, 14, 15 | isnvi 30557 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 〈cop 4583 × cxp 5617 ‘cfv 6482 0cc0 11009 GrpOpcgr 30433 GIdcgi 30434 AbelOpcablo 30488 NrmCVeccnv 30528 ℋchba 30863 +ℎ cva 30864 ·ℎ csm 30865 normℎcno 30867 0ℎc0v 30868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-hilex 30943 ax-hfvadd 30944 ax-hvcom 30945 ax-hvass 30946 ax-hv0cl 30947 ax-hvaddid 30948 ax-hfvmul 30949 ax-hvmulid 30950 ax-hvmulass 30951 ax-hvdistr1 30952 ax-hvdistr2 30953 ax-hvmul0 30954 ax-hfi 31023 ax-his1 31026 ax-his2 31027 ax-his3 31028 ax-his4 31029 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-grpo 30437 df-gid 30438 df-ablo 30489 df-vc 30503 df-nv 30536 df-hnorm 30912 df-hvsub 30915 |
| This theorem is referenced by: hhva 31110 hh0v 31112 hhsm 31113 hhvs 31114 hhnm 31115 hhims 31116 hhmet 31118 hhmetdval 31120 hhip 31121 hhph 31122 hlimadd 31137 hhcau 31142 hhlm 31143 hhhl 31148 hhssabloilem 31205 hhsst 31210 hhshsslem1 31211 hhshsslem2 31212 hhsssh 31213 hhsssh2 31214 hhssvs 31216 occllem 31247 nmopsetretHIL 31808 hhlnoi 31844 hhnmoi 31845 hhbloi 31846 hh0oi 31847 nmopub2tHIL 31854 nmlnop0iHIL 31940 hmopidmchi 32095 |
| Copyright terms: Public domain | W3C validator |