HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhnv Structured version   Visualization version   GIF version

Theorem hhnv 31145
Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhnv 𝑈 ∈ NrmCVec

Proof of Theorem hhnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 31140 . . . 4 + ∈ AbelOp
2 ablogrpo 30527 . . . 4 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . . 3 + ∈ GrpOp
4 ax-hfvadd 30980 . . . 4 + :( ℋ × ℋ)⟶ ℋ
54fdmi 6662 . . 3 dom + = ( ℋ × ℋ)
63, 5grporn 30501 . 2 ℋ = ran +
7 hilid 31141 . . 3 (GId‘ + ) = 0
87eqcomi 2740 . 2 0 = (GId‘ + )
9 hilvc 31142 . 2 ⟨ + , · ⟩ ∈ CVecOLD
10 normf 31103 . 2 norm: ℋ⟶ℝ
11 norm-i 31109 . . 3 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
1211biimpa 476 . 2 ((𝑥 ∈ ℋ ∧ (norm𝑥) = 0) → 𝑥 = 0)
13 norm-iii 31120 . 2 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
14 norm-ii 31118 . 2 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
15 hhnv.1 . 2 𝑈 = ⟨⟨ + , · ⟩, norm
166, 8, 9, 10, 12, 13, 14, 15isnvi 30593 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  cop 4579   × cxp 5612  cfv 6481  0cc0 11006  GrpOpcgr 30469  GIdcgi 30470  AbelOpcablo 30524  NrmCVeccnv 30564  chba 30899   + cva 30900   · csm 30901  normcno 30903  0c0v 30904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-hilex 30979  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvmulass 30987  ax-hvdistr1 30988  ax-hvdistr2 30989  ax-hvmul0 30990  ax-hfi 31059  ax-his1 31062  ax-his2 31063  ax-his3 31064  ax-his4 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30473  df-gid 30474  df-ablo 30525  df-vc 30539  df-nv 30572  df-hnorm 30948  df-hvsub 30951
This theorem is referenced by:  hhva  31146  hh0v  31148  hhsm  31149  hhvs  31150  hhnm  31151  hhims  31152  hhmet  31154  hhmetdval  31156  hhip  31157  hhph  31158  hlimadd  31173  hhcau  31178  hhlm  31179  hhhl  31184  hhssabloilem  31241  hhsst  31246  hhshsslem1  31247  hhshsslem2  31248  hhsssh  31249  hhsssh2  31250  hhssvs  31252  occllem  31283  nmopsetretHIL  31844  hhlnoi  31880  hhnmoi  31881  hhbloi  31882  hh0oi  31883  nmopub2tHIL  31890  nmlnop0iHIL  31976  hmopidmchi  32131
  Copyright terms: Public domain W3C validator