MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvgrp Structured version   Visualization version   GIF version

Theorem nvgrp 30597
Description: The vector addition operation of a normed complex vector space is a group. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvabl.1 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
nvgrp (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)

Proof of Theorem nvgrp
StepHypRef Expression
1 nvabl.1 . . 3 𝐺 = ( +𝑣𝑈)
21nvablo 30596 . 2 (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp)
3 ablogrpo 30527 . 2 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
42, 3syl 17 1 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  GrpOpcgr 30469  AbelOpcablo 30524  NrmCVeccnv 30564   +𝑣 cpv 30565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-1st 7921  df-2nd 7922  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580
This theorem is referenced by:  nvgf  30598  nvgcl  30600  nvass  30602  nvrcan  30604  nvzcl  30614  nv0rid  30615  nv0lid  30616  nvinvfval  30620  nvmval  30622  nvmfval  30624  nvnegneg  30629  nvrinv  30631  nvlinv  30632  hhshsslem1  31247
  Copyright terms: Public domain W3C validator