Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveqan12rd | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | 1, 2 | oveqan12d 7294 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
4 | 3 | ancoms 459 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: addpipq 10693 mulgt0sr 10861 mulcnsr 10892 mulresr 10895 recdiv 11681 revccat 14479 rlimdiv 15357 caucvg 15390 divgcdcoprm0 16370 estrchom 17843 funcestrcsetclem5 17861 ismhm 18432 xrsdsval 20642 mpfrcl 21295 matval 21558 ucnval 23429 volcn 24770 dvres2lem 25074 dvid 25082 c1lip3 25163 taylthlem1 25532 abelthlem9 25599 2sqnn 26587 brbtwn2 27273 nonbooli 30013 0cnop 30341 0cnfn 30342 idcnop 30343 bccolsum 33705 ftc1anc 35858 rmydioph 40836 expdiophlem2 40844 dvcosax 43467 ismgmhm 45337 2zrngamgm 45497 rnghmsscmap2 45531 rnghmsscmap 45532 funcrngcsetc 45556 rhmsscmap2 45577 rhmsscmap 45578 funcringcsetc 45593 |
Copyright terms: Public domain | W3C validator |