![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveqan12rd | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | 1, 2 | oveqan12d 7467 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: addpipq 11006 mulgt0sr 11174 mulcnsr 11205 mulresr 11208 recdiv 12000 revccat 14814 rlimdiv 15694 caucvg 15727 divgcdcoprm0 16712 estrchom 18195 funcestrcsetclem5 18213 ismgmhm 18734 ismhm 18820 rnghmsscmap2 20651 rnghmsscmap 20652 funcrngcsetc 20662 rhmsscmap2 20680 rhmsscmap 20681 funcringcsetc 20696 xrsdsval 21451 mpfrcl 22132 matval 22436 ucnval 24307 volcn 25660 dvres2lem 25965 dvid 25973 c1lip3 26058 taylthlem1 26433 abelthlem9 26502 2sqnn 27501 brbtwn2 28938 nonbooli 31683 0cnop 32011 0cnfn 32012 idcnop 32013 bccolsum 35701 ftc1anc 37661 rmydioph 42971 expdiophlem2 42979 dvcosax 45847 2zrngamgm 47968 |
Copyright terms: Public domain | W3C validator |