![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveqan12rd | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | 1, 2 | oveqan12d 7450 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 (class class class)co 7431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: addpipq 10975 mulgt0sr 11143 mulcnsr 11174 mulresr 11177 recdiv 11971 revccat 14801 rlimdiv 15679 caucvg 15712 divgcdcoprm0 16699 estrchom 18182 funcestrcsetclem5 18200 ismgmhm 18722 ismhm 18811 rnghmsscmap2 20646 rnghmsscmap 20647 funcrngcsetc 20657 rhmsscmap2 20675 rhmsscmap 20676 funcringcsetc 20691 xrsdsval 21446 mpfrcl 22127 matval 22431 ucnval 24302 volcn 25655 dvres2lem 25960 dvid 25968 c1lip3 26053 taylthlem1 26430 abelthlem9 26499 2sqnn 27498 brbtwn2 28935 nonbooli 31680 0cnop 32008 0cnfn 32009 idcnop 32010 bccolsum 35719 ftc1anc 37688 rmydioph 43003 expdiophlem2 43011 dvcosax 45882 2zrngamgm 48089 |
Copyright terms: Public domain | W3C validator |