| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqan12rd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | oveqan12d 7388 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: addpipq 10868 mulgt0sr 11036 mulcnsr 11067 mulresr 11070 recdiv 11866 revccat 14708 rlimdiv 15589 caucvg 15622 divgcdcoprm0 16612 estrchom 18069 funcestrcsetclem5 18086 ismgmhm 18606 ismhm 18695 rnghmsscmap2 20550 rnghmsscmap 20551 funcrngcsetc 20561 rhmsscmap2 20579 rhmsscmap 20580 funcringcsetc 20595 xrsdsval 21353 mpfrcl 22026 matval 22332 ucnval 24198 volcn 25541 dvres2lem 25845 dvid 25853 c1lip3 25938 taylthlem1 26315 abelthlem9 26384 2sqnn 27384 brbtwn2 28886 nonbooli 31631 0cnop 31959 0cnfn 31960 idcnop 31961 bccolsum 35720 ftc1anc 37689 rmydioph 42997 expdiophlem2 43005 dvcosax 45918 2zrngamgm 48227 |
| Copyright terms: Public domain | W3C validator |