| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqan12rd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | oveqan12d 7433 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 (class class class)co 7414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-iota 6495 df-fv 6550 df-ov 7417 |
| This theorem is referenced by: addpipq 10960 mulgt0sr 11128 mulcnsr 11159 mulresr 11162 recdiv 11956 revccat 14787 rlimdiv 15665 caucvg 15698 divgcdcoprm0 16685 estrchom 18147 funcestrcsetclem5 18164 ismgmhm 18683 ismhm 18772 rnghmsscmap2 20602 rnghmsscmap 20603 funcrngcsetc 20613 rhmsscmap2 20631 rhmsscmap 20632 funcringcsetc 20647 xrsdsval 21395 mpfrcl 22076 matval 22382 ucnval 24250 volcn 25596 dvres2lem 25900 dvid 25908 c1lip3 25993 taylthlem1 26370 abelthlem9 26439 2sqnn 27438 brbtwn2 28869 nonbooli 31617 0cnop 31945 0cnfn 31946 idcnop 31947 bccolsum 35680 ftc1anc 37649 rmydioph 42971 expdiophlem2 42979 dvcosax 45886 2zrngamgm 48107 |
| Copyright terms: Public domain | W3C validator |