| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqan12rd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | oveqan12d 7429 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: addpipq 10956 mulgt0sr 11124 mulcnsr 11155 mulresr 11158 recdiv 11952 revccat 14789 rlimdiv 15667 caucvg 15700 divgcdcoprm0 16689 estrchom 18144 funcestrcsetclem5 18161 ismgmhm 18679 ismhm 18768 rnghmsscmap2 20594 rnghmsscmap 20595 funcrngcsetc 20605 rhmsscmap2 20623 rhmsscmap 20624 funcringcsetc 20639 xrsdsval 21383 mpfrcl 22048 matval 22354 ucnval 24220 volcn 25564 dvres2lem 25868 dvid 25876 c1lip3 25961 taylthlem1 26338 abelthlem9 26407 2sqnn 27407 brbtwn2 28889 nonbooli 31637 0cnop 31965 0cnfn 31966 idcnop 31967 bccolsum 35761 ftc1anc 37730 rmydioph 43013 expdiophlem2 43021 dvcosax 45935 2zrngamgm 48200 |
| Copyright terms: Public domain | W3C validator |