| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqan12rd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | oveqan12d 7406 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: addpipq 10890 mulgt0sr 11058 mulcnsr 11089 mulresr 11092 recdiv 11888 revccat 14731 rlimdiv 15612 caucvg 15645 divgcdcoprm0 16635 estrchom 18088 funcestrcsetclem5 18105 ismgmhm 18623 ismhm 18712 rnghmsscmap2 20538 rnghmsscmap 20539 funcrngcsetc 20549 rhmsscmap2 20567 rhmsscmap 20568 funcringcsetc 20583 xrsdsval 21327 mpfrcl 21992 matval 22298 ucnval 24164 volcn 25507 dvres2lem 25811 dvid 25819 c1lip3 25904 taylthlem1 26281 abelthlem9 26350 2sqnn 27350 brbtwn2 28832 nonbooli 31580 0cnop 31908 0cnfn 31909 idcnop 31910 bccolsum 35726 ftc1anc 37695 rmydioph 43003 expdiophlem2 43011 dvcosax 45924 2zrngamgm 48233 |
| Copyright terms: Public domain | W3C validator |