Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveqan12rd | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | 1, 2 | oveqan12d 7288 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
4 | 3 | ancoms 459 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 (class class class)co 7269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6389 df-fv 6439 df-ov 7272 |
This theorem is referenced by: addpipq 10692 mulgt0sr 10860 mulcnsr 10891 mulresr 10894 recdiv 11679 revccat 14475 rlimdiv 15353 caucvg 15386 divgcdcoprm0 16366 estrchom 17839 funcestrcsetclem5 17857 ismhm 18428 xrsdsval 20638 mpfrcl 21291 matval 21554 ucnval 23425 volcn 24766 dvres2lem 25070 dvid 25078 c1lip3 25159 taylthlem1 25528 abelthlem9 25595 2sqnn 26583 brbtwn2 27269 nonbooli 30007 0cnop 30335 0cnfn 30336 idcnop 30337 bccolsum 33699 ftc1anc 35852 rmydioph 40831 expdiophlem2 40839 dvcosax 43436 ismgmhm 45304 2zrngamgm 45464 rnghmsscmap2 45498 rnghmsscmap 45499 funcrngcsetc 45523 rhmsscmap2 45544 rhmsscmap 45545 funcringcsetc 45560 |
Copyright terms: Public domain | W3C validator |