Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveqan12rd | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | 1, 2 | oveqan12d 7274 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: addpipq 10624 mulgt0sr 10792 mulcnsr 10823 mulresr 10826 recdiv 11611 revccat 14407 rlimdiv 15285 caucvg 15318 divgcdcoprm0 16298 estrchom 17759 funcestrcsetclem5 17777 ismhm 18347 xrsdsval 20554 mpfrcl 21205 matval 21468 ucnval 23337 volcn 24675 dvres2lem 24979 dvid 24987 c1lip3 25068 taylthlem1 25437 abelthlem9 25504 2sqnn 26492 brbtwn2 27176 nonbooli 29914 0cnop 30242 0cnfn 30243 idcnop 30244 bccolsum 33611 ftc1anc 35785 rmydioph 40752 expdiophlem2 40760 dvcosax 43357 ismgmhm 45225 2zrngamgm 45385 rnghmsscmap2 45419 rnghmsscmap 45420 funcrngcsetc 45444 rhmsscmap2 45465 rhmsscmap 45466 funcringcsetc 45481 |
Copyright terms: Public domain | W3C validator |