| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqan12rd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | oveqan12d 7389 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6453 df-fv 6508 df-ov 7373 |
| This theorem is referenced by: addpipq 10869 mulgt0sr 11037 mulcnsr 11068 mulresr 11071 recdiv 11867 revccat 14709 rlimdiv 15590 caucvg 15623 divgcdcoprm0 16613 estrchom 18070 funcestrcsetclem5 18087 ismgmhm 18607 ismhm 18696 rnghmsscmap2 20551 rnghmsscmap 20552 funcrngcsetc 20562 rhmsscmap2 20580 rhmsscmap 20581 funcringcsetc 20596 xrsdsval 21354 mpfrcl 22027 matval 22333 ucnval 24199 volcn 25542 dvres2lem 25846 dvid 25854 c1lip3 25939 taylthlem1 26316 abelthlem9 26385 2sqnn 27385 brbtwn2 28887 nonbooli 31632 0cnop 31960 0cnfn 31961 idcnop 31962 bccolsum 35721 ftc1anc 37690 rmydioph 42998 expdiophlem2 43006 dvcosax 45919 2zrngamgm 48228 |
| Copyright terms: Public domain | W3C validator |