![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveqan12rd | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12rd | ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | 1, 2 | oveqan12d 7420 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 (class class class)co 7401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-iota 6485 df-fv 6541 df-ov 7404 |
This theorem is referenced by: addpipq 10927 mulgt0sr 11095 mulcnsr 11126 mulresr 11129 recdiv 11916 revccat 14712 rlimdiv 15588 caucvg 15621 divgcdcoprm0 16598 estrchom 18077 funcestrcsetclem5 18095 ismgmhm 18616 ismhm 18702 rnghmsscmap2 20510 rnghmsscmap 20511 funcrngcsetc 20521 rhmsscmap2 20539 rhmsscmap 20540 funcringcsetc 20555 xrsdsval 21268 mpfrcl 21949 matval 22221 ucnval 24092 volcn 25445 dvres2lem 25749 dvid 25757 c1lip3 25842 taylthlem1 26214 abelthlem9 26282 2sqnn 27276 brbtwn2 28587 nonbooli 31328 0cnop 31656 0cnfn 31657 idcnop 31658 bccolsum 35170 ftc1anc 37025 rmydioph 42208 expdiophlem2 42216 dvcosax 45093 2zrngamgm 47074 |
Copyright terms: Public domain | W3C validator |