Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0ltat Structured version   Visualization version   GIF version

Theorem 0ltat 36419
Description: An atom is greater than zero. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
0ltat.z 0 = (0.‘𝐾)
0ltat.s < = (lt‘𝐾)
0ltat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
0ltat ((𝐾 ∈ OP ∧ 𝑃𝐴) → 0 < 𝑃)

Proof of Theorem 0ltat
StepHypRef Expression
1 simpl 485 . 2 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 𝐾 ∈ OP)
2 eqid 2819 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 0ltat.z . . . 4 0 = (0.‘𝐾)
42, 3op0cl 36312 . . 3 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
54adantr 483 . 2 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 0 ∈ (Base‘𝐾))
6 0ltat.a . . . 4 𝐴 = (Atoms‘𝐾)
72, 6atbase 36417 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
87adantl 484 . 2 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 𝑃 ∈ (Base‘𝐾))
9 eqid 2819 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
103, 9, 6atcvr0 36416 . 2 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
11 0ltat.s . . 3 < = (lt‘𝐾)
122, 11, 9cvrlt 36398 . 2 (((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 < 𝑃)
131, 5, 8, 10, 12syl31anc 1367 1 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 0 < 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107   class class class wbr 5057  cfv 6348  Basecbs 16475  ltcplt 17543  0.cp0 17639  OPcops 36300  ccvr 36390  Atomscatm 36391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-glb 17577  df-p0 17641  df-oposet 36304  df-covers 36394  df-ats 36395
This theorem is referenced by:  2atm2atN  36913  dia2dimlem2  38193  dia2dimlem3  38194
  Copyright terms: Public domain W3C validator