Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0ltat Structured version   Visualization version   GIF version

Theorem 0ltat 37284
Description: An atom is greater than zero. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
0ltat.z 0 = (0.‘𝐾)
0ltat.s < = (lt‘𝐾)
0ltat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
0ltat ((𝐾 ∈ OP ∧ 𝑃𝐴) → 0 < 𝑃)

Proof of Theorem 0ltat
StepHypRef Expression
1 simpl 482 . 2 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 𝐾 ∈ OP)
2 eqid 2739 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 0ltat.z . . . 4 0 = (0.‘𝐾)
42, 3op0cl 37177 . . 3 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
54adantr 480 . 2 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 0 ∈ (Base‘𝐾))
6 0ltat.a . . . 4 𝐴 = (Atoms‘𝐾)
72, 6atbase 37282 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
87adantl 481 . 2 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 𝑃 ∈ (Base‘𝐾))
9 eqid 2739 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
103, 9, 6atcvr0 37281 . 2 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
11 0ltat.s . . 3 < = (lt‘𝐾)
122, 11, 9cvrlt 37263 . 2 (((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 < 𝑃)
131, 5, 8, 10, 12syl31anc 1371 1 ((𝐾 ∈ OP ∧ 𝑃𝐴) → 0 < 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109   class class class wbr 5078  cfv 6430  Basecbs 16893  ltcplt 18007  0.cp0 18122  OPcops 37165  ccvr 37255  Atomscatm 37256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-glb 18046  df-p0 18124  df-oposet 37169  df-covers 37259  df-ats 37260
This theorem is referenced by:  2atm2atN  37778  dia2dimlem2  39058  dia2dimlem3  39059
  Copyright terms: Public domain W3C validator