Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ltat | Structured version Visualization version GIF version |
Description: An atom is greater than zero. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
0ltat.z | ⊢ 0 = (0.‘𝐾) |
0ltat.s | ⊢ < = (lt‘𝐾) |
0ltat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
0ltat | ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 < 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ OP) | |
2 | eqid 2739 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | 0ltat.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
4 | 2, 3 | op0cl 37177 | . . 3 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 ∈ (Base‘𝐾)) |
6 | 0ltat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | 2, 6 | atbase 37282 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
9 | eqid 2739 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
10 | 3, 9, 6 | atcvr0 37281 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
11 | 0ltat.s | . . 3 ⊢ < = (lt‘𝐾) | |
12 | 2, 11, 9 | cvrlt 37263 | . 2 ⊢ (((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 < 𝑃) |
13 | 1, 5, 8, 10, 12 | syl31anc 1371 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 < 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 ‘cfv 6430 Basecbs 16893 ltcplt 18007 0.cp0 18122 OPcops 37165 ⋖ ccvr 37255 Atomscatm 37256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-glb 18046 df-p0 18124 df-oposet 37169 df-covers 37259 df-ats 37260 |
This theorem is referenced by: 2atm2atN 37778 dia2dimlem2 39058 dia2dimlem3 39059 |
Copyright terms: Public domain | W3C validator |