| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ltat | Structured version Visualization version GIF version | ||
| Description: An atom is greater than zero. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| 0ltat.z | ⊢ 0 = (0.‘𝐾) |
| 0ltat.s | ⊢ < = (lt‘𝐾) |
| 0ltat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| 0ltat | ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 < 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ OP) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | 0ltat.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 4 | 2, 3 | op0cl 39165 | . . 3 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 ∈ (Base‘𝐾)) |
| 6 | 0ltat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 2, 6 | atbase 39270 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
| 9 | eqid 2729 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 10 | 3, 9, 6 | atcvr0 39269 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
| 11 | 0ltat.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 12 | 2, 11, 9 | cvrlt 39251 | . 2 ⊢ (((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 < 𝑃) |
| 13 | 1, 5, 8, 10, 12 | syl31anc 1375 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 < 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 Basecbs 17138 ltcplt 18232 0.cp0 18345 OPcops 39153 ⋖ ccvr 39243 Atomscatm 39244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-glb 18269 df-p0 18347 df-oposet 39157 df-covers 39247 df-ats 39248 |
| This theorem is referenced by: 2atm2atN 39767 dia2dimlem2 41047 dia2dimlem3 41048 |
| Copyright terms: Public domain | W3C validator |