Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ltat | Structured version Visualization version GIF version |
Description: An atom is greater than zero. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
0ltat.z | ⊢ 0 = (0.‘𝐾) |
0ltat.s | ⊢ < = (lt‘𝐾) |
0ltat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
0ltat | ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 < 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ OP) | |
2 | eqid 2736 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | 0ltat.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
4 | 2, 3 | op0cl 37240 | . . 3 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
5 | 4 | adantr 482 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 ∈ (Base‘𝐾)) |
6 | 0ltat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | 2, 6 | atbase 37345 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
8 | 7 | adantl 483 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
9 | eqid 2736 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
10 | 3, 9, 6 | atcvr0 37344 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
11 | 0ltat.s | . . 3 ⊢ < = (lt‘𝐾) | |
12 | 2, 11, 9 | cvrlt 37326 | . 2 ⊢ (((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 < 𝑃) |
13 | 1, 5, 8, 10, 12 | syl31anc 1373 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 < 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 ‘cfv 6458 Basecbs 16957 ltcplt 18071 0.cp0 18186 OPcops 37228 ⋖ ccvr 37318 Atomscatm 37319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-glb 18110 df-p0 18188 df-oposet 37232 df-covers 37322 df-ats 37323 |
This theorem is referenced by: 2atm2atN 37841 dia2dimlem2 39121 dia2dimlem3 39122 |
Copyright terms: Public domain | W3C validator |