Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp0lt Structured version   Visualization version   GIF version

Theorem lhp0lt 39946
Description: A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
lhp0lt.s < = (lt‘𝐾)
lhp0lt.z 0 = (0.‘𝐾)
lhp0lt.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp0lt ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 < 𝑊)

Proof of Theorem lhp0lt
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 lhp0lt.s . . 3 < = (lt‘𝐾)
2 eqid 2734 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
3 lhp0lt.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexlt 39945 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊)
5 simp1l 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ HL)
6 hlop 39304 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
7 eqid 2734 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 lhp0lt.z . . . . . . 7 0 = (0.‘𝐾)
97, 8op0cl 39126 . . . . . 6 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
105, 6, 93syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ∈ (Base‘𝐾))
117, 2atbase 39231 . . . . . 6 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
12113ad2ant2 1134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Base‘𝐾))
13 simp2 1137 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Atoms‘𝐾))
14 eqid 2734 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
158, 14, 2atcvr0 39230 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 ( ⋖ ‘𝐾)𝑝)
165, 13, 15syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ( ⋖ ‘𝐾)𝑝)
177, 1, 14cvrlt 39212 . . . . 5 (((𝐾 ∈ HL ∧ 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑝) → 0 < 𝑝)
185, 10, 12, 16, 17syl31anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑝)
19 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 < 𝑊)
20 hlpos 39308 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Poset)
215, 20syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ Poset)
22 simp1r 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊𝐻)
237, 3lhpbase 39941 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2422, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊 ∈ (Base‘𝐾))
257, 1plttr 18361 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (( 0 < 𝑝𝑝 < 𝑊) → 0 < 𝑊))
2621, 10, 12, 24, 25syl13anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → (( 0 < 𝑝𝑝 < 𝑊) → 0 < 𝑊))
2718, 19, 26mp2and 699 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑊)
2827rexlimdv3a 3146 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊0 < 𝑊))
294, 28mpd 15 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 < 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059   class class class wbr 5125  cfv 6542  Basecbs 17230  Posetcpo 18328  ltcplt 18329  0.cp0 18442  OPcops 39114  ccvr 39204  Atomscatm 39205  HLchlt 39292  LHypclh 39927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-proset 18315  df-poset 18334  df-plt 18349  df-lub 18365  df-glb 18366  df-join 18367  df-meet 18368  df-p0 18444  df-p1 18445  df-lat 18451  df-clat 18518  df-oposet 39118  df-ol 39120  df-oml 39121  df-covers 39208  df-ats 39209  df-atl 39240  df-cvlat 39264  df-hlat 39293  df-lhyp 39931
This theorem is referenced by:  lhpn0  39947
  Copyright terms: Public domain W3C validator