Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp0lt Structured version   Visualization version   GIF version

Theorem lhp0lt 39990
Description: A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
lhp0lt.s < = (lt‘𝐾)
lhp0lt.z 0 = (0.‘𝐾)
lhp0lt.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp0lt ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 < 𝑊)

Proof of Theorem lhp0lt
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 lhp0lt.s . . 3 < = (lt‘𝐾)
2 eqid 2729 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
3 lhp0lt.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexlt 39989 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊)
5 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ HL)
6 hlop 39348 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
7 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 lhp0lt.z . . . . . . 7 0 = (0.‘𝐾)
97, 8op0cl 39170 . . . . . 6 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
105, 6, 93syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ∈ (Base‘𝐾))
117, 2atbase 39275 . . . . . 6 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
12113ad2ant2 1134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Base‘𝐾))
13 simp2 1137 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Atoms‘𝐾))
14 eqid 2729 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
158, 14, 2atcvr0 39274 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 ( ⋖ ‘𝐾)𝑝)
165, 13, 15syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ( ⋖ ‘𝐾)𝑝)
177, 1, 14cvrlt 39256 . . . . 5 (((𝐾 ∈ HL ∧ 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑝) → 0 < 𝑝)
185, 10, 12, 16, 17syl31anc 1375 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑝)
19 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 < 𝑊)
20 hlpos 39352 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Poset)
215, 20syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ Poset)
22 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊𝐻)
237, 3lhpbase 39985 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2422, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊 ∈ (Base‘𝐾))
257, 1plttr 18281 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (( 0 < 𝑝𝑝 < 𝑊) → 0 < 𝑊))
2621, 10, 12, 24, 25syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → (( 0 < 𝑝𝑝 < 𝑊) → 0 < 𝑊))
2718, 19, 26mp2and 699 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑊)
2827rexlimdv3a 3138 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊0 < 𝑊))
294, 28mpd 15 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 < 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  Basecbs 17155  Posetcpo 18248  ltcplt 18249  0.cp0 18362  OPcops 39158  ccvr 39248  Atomscatm 39249  HLchlt 39336  LHypclh 39971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-lhyp 39975
This theorem is referenced by:  lhpn0  39991
  Copyright terms: Public domain W3C validator