Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp0lt Structured version   Visualization version   GIF version

Theorem lhp0lt 37175
Description: A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
lhp0lt.s < = (lt‘𝐾)
lhp0lt.z 0 = (0.‘𝐾)
lhp0lt.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp0lt ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 < 𝑊)

Proof of Theorem lhp0lt
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 lhp0lt.s . . 3 < = (lt‘𝐾)
2 eqid 2820 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
3 lhp0lt.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexlt 37174 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊)
5 simp1l 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ HL)
6 hlop 36534 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
7 eqid 2820 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 lhp0lt.z . . . . . . 7 0 = (0.‘𝐾)
97, 8op0cl 36356 . . . . . 6 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
105, 6, 93syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ∈ (Base‘𝐾))
117, 2atbase 36461 . . . . . 6 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
12113ad2ant2 1130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Base‘𝐾))
13 simp2 1133 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Atoms‘𝐾))
14 eqid 2820 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
158, 14, 2atcvr0 36460 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 ( ⋖ ‘𝐾)𝑝)
165, 13, 15syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ( ⋖ ‘𝐾)𝑝)
177, 1, 14cvrlt 36442 . . . . 5 (((𝐾 ∈ HL ∧ 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑝) → 0 < 𝑝)
185, 10, 12, 16, 17syl31anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑝)
19 simp3 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 < 𝑊)
20 hlpos 36538 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Poset)
215, 20syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ Poset)
22 simp1r 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊𝐻)
237, 3lhpbase 37170 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2422, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊 ∈ (Base‘𝐾))
257, 1plttr 17559 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (( 0 < 𝑝𝑝 < 𝑊) → 0 < 𝑊))
2621, 10, 12, 24, 25syl13anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → (( 0 < 𝑝𝑝 < 𝑊) → 0 < 𝑊))
2718, 19, 26mp2and 697 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑊)
2827rexlimdv3a 3273 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊0 < 𝑊))
294, 28mpd 15 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 < 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3126   class class class wbr 5042  cfv 6331  Basecbs 16462  Posetcpo 17529  ltcplt 17530  0.cp0 17626  OPcops 36344  ccvr 36434  Atomscatm 36435  HLchlt 36522  LHypclh 37156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-proset 17517  df-poset 17535  df-plt 17547  df-lub 17563  df-glb 17564  df-join 17565  df-meet 17566  df-p0 17628  df-p1 17629  df-lat 17635  df-clat 17697  df-oposet 36348  df-ol 36350  df-oml 36351  df-covers 36438  df-ats 36439  df-atl 36470  df-cvlat 36494  df-hlat 36523  df-lhyp 37160
This theorem is referenced by:  lhpn0  37176
  Copyright terms: Public domain W3C validator