| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhp0lt | Structured version Visualization version GIF version | ||
| Description: A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
| Ref | Expression |
|---|---|
| lhp0lt.s | ⊢ < = (lt‘𝐾) |
| lhp0lt.z | ⊢ 0 = (0.‘𝐾) |
| lhp0lt.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhp0lt | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 < 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhp0lt.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 2 | eqid 2736 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | lhp0lt.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | 1, 2, 3 | lhpexlt 40026 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊) |
| 5 | simp1l 1198 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ HL) | |
| 6 | hlop 39385 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 7 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 8 | lhp0lt.z | . . . . . . 7 ⊢ 0 = (0.‘𝐾) | |
| 9 | 7, 8 | op0cl 39207 | . . . . . 6 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 10 | 5, 6, 9 | 3syl 18 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ∈ (Base‘𝐾)) |
| 11 | 7, 2 | atbase 39312 | . . . . . 6 ⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) |
| 12 | 11 | 3ad2ant2 1134 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Base‘𝐾)) |
| 13 | simp2 1137 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Atoms‘𝐾)) | |
| 14 | eqid 2736 | . . . . . . 7 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 15 | 8, 14, 2 | atcvr0 39311 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 ( ⋖ ‘𝐾)𝑝) |
| 16 | 5, 13, 15 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ( ⋖ ‘𝐾)𝑝) |
| 17 | 7, 1, 14 | cvrlt 39293 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑝) → 0 < 𝑝) |
| 18 | 5, 10, 12, 16, 17 | syl31anc 1375 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑝) |
| 19 | simp3 1138 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 < 𝑊) | |
| 20 | hlpos 39389 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) | |
| 21 | 5, 20 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ Poset) |
| 22 | simp1r 1199 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊 ∈ 𝐻) | |
| 23 | 7, 3 | lhpbase 40022 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 24 | 22, 23 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊 ∈ (Base‘𝐾)) |
| 25 | 7, 1 | plttr 18357 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (( 0 < 𝑝 ∧ 𝑝 < 𝑊) → 0 < 𝑊)) |
| 26 | 21, 10, 12, 24, 25 | syl13anc 1374 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → (( 0 < 𝑝 ∧ 𝑝 < 𝑊) → 0 < 𝑊)) |
| 27 | 18, 19, 26 | mp2and 699 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑊) |
| 28 | 27 | rexlimdv3a 3146 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊 → 0 < 𝑊)) |
| 29 | 4, 28 | mpd 15 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 < 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 class class class wbr 5124 ‘cfv 6536 Basecbs 17233 Posetcpo 18324 ltcplt 18325 0.cp0 18438 OPcops 39195 ⋖ ccvr 39285 Atomscatm 39286 HLchlt 39373 LHypclh 40008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-lhyp 40012 |
| This theorem is referenced by: lhpn0 40028 |
| Copyright terms: Public domain | W3C validator |