Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp0lt Structured version   Visualization version   GIF version

Theorem lhp0lt 39960
Description: A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
lhp0lt.s < = (lt‘𝐾)
lhp0lt.z 0 = (0.‘𝐾)
lhp0lt.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp0lt ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 < 𝑊)

Proof of Theorem lhp0lt
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 lhp0lt.s . . 3 < = (lt‘𝐾)
2 eqid 2740 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
3 lhp0lt.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexlt 39959 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊)
5 simp1l 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ HL)
6 hlop 39318 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
7 eqid 2740 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 lhp0lt.z . . . . . . 7 0 = (0.‘𝐾)
97, 8op0cl 39140 . . . . . 6 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
105, 6, 93syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ∈ (Base‘𝐾))
117, 2atbase 39245 . . . . . 6 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
12113ad2ant2 1134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Base‘𝐾))
13 simp2 1137 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Atoms‘𝐾))
14 eqid 2740 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
158, 14, 2atcvr0 39244 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 ( ⋖ ‘𝐾)𝑝)
165, 13, 15syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ( ⋖ ‘𝐾)𝑝)
177, 1, 14cvrlt 39226 . . . . 5 (((𝐾 ∈ HL ∧ 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑝) → 0 < 𝑝)
185, 10, 12, 16, 17syl31anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑝)
19 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 < 𝑊)
20 hlpos 39322 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Poset)
215, 20syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ Poset)
22 simp1r 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊𝐻)
237, 3lhpbase 39955 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2422, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊 ∈ (Base‘𝐾))
257, 1plttr 18412 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (( 0 < 𝑝𝑝 < 𝑊) → 0 < 𝑊))
2621, 10, 12, 24, 25syl13anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → (( 0 < 𝑝𝑝 < 𝑊) → 0 < 𝑊))
2718, 19, 26mp2and 698 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑊)
2827rexlimdv3a 3165 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊0 < 𝑊))
294, 28mpd 15 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 < 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  Basecbs 17258  Posetcpo 18377  ltcplt 18378  0.cp0 18493  OPcops 39128  ccvr 39218  Atomscatm 39219  HLchlt 39306  LHypclh 39941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-lhyp 39945
This theorem is referenced by:  lhpn0  39961
  Copyright terms: Public domain W3C validator