Step | Hyp | Ref
| Expression |
1 | | lhp0lt.s |
. . 3
β’ < =
(ltβπΎ) |
2 | | eqid 2732 |
. . 3
β’
(AtomsβπΎ) =
(AtomsβπΎ) |
3 | | lhp0lt.h |
. . 3
β’ π» = (LHypβπΎ) |
4 | 1, 2, 3 | lhpexlt 39176 |
. 2
β’ ((πΎ β HL β§ π β π») β βπ β (AtomsβπΎ)π < π) |
5 | | simp1l 1197 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ) β§ π < π) β πΎ β HL) |
6 | | hlop 38535 |
. . . . . 6
β’ (πΎ β HL β πΎ β OP) |
7 | | eqid 2732 |
. . . . . . 7
β’
(BaseβπΎ) =
(BaseβπΎ) |
8 | | lhp0lt.z |
. . . . . . 7
β’ 0 =
(0.βπΎ) |
9 | 7, 8 | op0cl 38357 |
. . . . . 6
β’ (πΎ β OP β 0 β
(BaseβπΎ)) |
10 | 5, 6, 9 | 3syl 18 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ) β§ π < π) β 0 β (BaseβπΎ)) |
11 | 7, 2 | atbase 38462 |
. . . . . 6
β’ (π β (AtomsβπΎ) β π β (BaseβπΎ)) |
12 | 11 | 3ad2ant2 1134 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ) β§ π < π) β π β (BaseβπΎ)) |
13 | | simp2 1137 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ) β§ π < π) β π β (AtomsβπΎ)) |
14 | | eqid 2732 |
. . . . . . 7
β’ ( β
βπΎ) = ( β
βπΎ) |
15 | 8, 14, 2 | atcvr0 38461 |
. . . . . 6
β’ ((πΎ β HL β§ π β (AtomsβπΎ)) β 0 ( β βπΎ)π) |
16 | 5, 13, 15 | syl2anc 584 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ) β§ π < π) β 0 ( β βπΎ)π) |
17 | 7, 1, 14 | cvrlt 38443 |
. . . . 5
β’ (((πΎ β HL β§ 0 β
(BaseβπΎ) β§ π β (BaseβπΎ)) β§ 0 ( β βπΎ)π) β 0 < π) |
18 | 5, 10, 12, 16, 17 | syl31anc 1373 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ) β§ π < π) β 0 < π) |
19 | | simp3 1138 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ) β§ π < π) β π < π) |
20 | | hlpos 38539 |
. . . . . 6
β’ (πΎ β HL β πΎ β Poset) |
21 | 5, 20 | syl 17 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ) β§ π < π) β πΎ β Poset) |
22 | | simp1r 1198 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ) β§ π < π) β π β π») |
23 | 7, 3 | lhpbase 39172 |
. . . . . 6
β’ (π β π» β π β (BaseβπΎ)) |
24 | 22, 23 | syl 17 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ) β§ π < π) β π β (BaseβπΎ)) |
25 | 7, 1 | plttr 18299 |
. . . . 5
β’ ((πΎ β Poset β§ ( 0 β
(BaseβπΎ) β§ π β (BaseβπΎ) β§ π β (BaseβπΎ))) β (( 0 < π β§ π < π) β 0 < π)) |
26 | 21, 10, 12, 24, 25 | syl13anc 1372 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ) β§ π < π) β (( 0 < π β§ π < π) β 0 < π)) |
27 | 18, 19, 26 | mp2and 697 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β (AtomsβπΎ) β§ π < π) β 0 < π) |
28 | 27 | rexlimdv3a 3159 |
. 2
β’ ((πΎ β HL β§ π β π») β (βπ β (AtomsβπΎ)π < π β 0 < π)) |
29 | 4, 28 | mpd 15 |
1
β’ ((πΎ β HL β§ π β π») β 0 < π) |