Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp0lt Structured version   Visualization version   GIF version

Theorem lhp0lt 39997
Description: A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
lhp0lt.s < = (lt‘𝐾)
lhp0lt.z 0 = (0.‘𝐾)
lhp0lt.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp0lt ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 < 𝑊)

Proof of Theorem lhp0lt
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 lhp0lt.s . . 3 < = (lt‘𝐾)
2 eqid 2729 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
3 lhp0lt.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexlt 39996 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊)
5 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ HL)
6 hlop 39355 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
7 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
8 lhp0lt.z . . . . . . 7 0 = (0.‘𝐾)
97, 8op0cl 39177 . . . . . 6 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
105, 6, 93syl 18 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ∈ (Base‘𝐾))
117, 2atbase 39282 . . . . . 6 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
12113ad2ant2 1134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Base‘𝐾))
13 simp2 1137 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Atoms‘𝐾))
14 eqid 2729 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
158, 14, 2atcvr0 39281 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 ( ⋖ ‘𝐾)𝑝)
165, 13, 15syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ( ⋖ ‘𝐾)𝑝)
177, 1, 14cvrlt 39263 . . . . 5 (((𝐾 ∈ HL ∧ 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑝) → 0 < 𝑝)
185, 10, 12, 16, 17syl31anc 1375 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑝)
19 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 < 𝑊)
20 hlpos 39359 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Poset)
215, 20syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ Poset)
22 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊𝐻)
237, 3lhpbase 39992 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2422, 23syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊 ∈ (Base‘𝐾))
257, 1plttr 18301 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (( 0 < 𝑝𝑝 < 𝑊) → 0 < 𝑊))
2621, 10, 12, 24, 25syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → (( 0 < 𝑝𝑝 < 𝑊) → 0 < 𝑊))
2718, 19, 26mp2and 699 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑊)
2827rexlimdv3a 3138 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊0 < 𝑊))
294, 28mpd 15 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 < 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  cfv 6511  Basecbs 17179  Posetcpo 18268  ltcplt 18269  0.cp0 18382  OPcops 39165  ccvr 39255  Atomscatm 39256  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-lhyp 39982
This theorem is referenced by:  lhpn0  39998
  Copyright terms: Public domain W3C validator