Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lnid | Structured version Visualization version GIF version |
Description: Identity law for points on lines. Theorem 4.18 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
lnxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
lnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
lnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
lnxfr.d | ⊢ − = (dist‘𝐺) |
lnid.1 | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
lnid.2 | ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
lnid.3 | ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
lnid.4 | ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) |
Ref | Expression |
---|---|
lnid | ⊢ (𝜑 → 𝑍 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | lnxfr.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | tglngval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglngval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tgcolg.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
6 | lnxfr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | tglngval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
8 | tglngval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
9 | tglngval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
10 | lnxfr.r | . . . 4 ⊢ ∼ = (cgrG‘𝐺) | |
11 | lnid.1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
12 | lnid.2 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) | |
13 | lnid.3 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) | |
14 | lnid.4 | . . . 4 ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) | |
15 | 1, 7, 3, 4, 8, 9, 5, 10, 5, 6, 2, 11, 12, 13, 14 | lncgr 26462 | . . 3 ⊢ (𝜑 → (𝑍 − 𝑍) = (𝑍 − 𝐴)) |
16 | 15 | eqcomd 2764 | . 2 ⊢ (𝜑 → (𝑍 − 𝐴) = (𝑍 − 𝑍)) |
17 | 1, 2, 3, 4, 5, 6, 5, 16 | axtgcgrid 26356 | 1 ⊢ (𝜑 → 𝑍 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 distcds 16632 TarskiGcstrkg 26323 Itvcitv 26329 LineGclng 26330 cgrGccgrg 26403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-oadd 8116 df-er 8299 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-dju 9363 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-xnn0 12007 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 df-hash 13741 df-word 13914 df-concat 13970 df-s1 13997 df-s2 14257 df-s3 14258 df-trkgc 26341 df-trkgb 26342 df-trkgcb 26343 df-trkg 26346 df-cgrg 26404 |
This theorem is referenced by: tgidinside 26464 tgbtwnconn1lem3 26467 |
Copyright terms: Public domain | W3C validator |