![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwnxfr | Structured version Visualization version GIF version |
Description: A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
Ref | Expression |
---|---|
tgcgrxfr.p | ⊢ 𝑃 = (Base‘𝐺) |
tgcgrxfr.m | ⊢ − = (dist‘𝐺) |
tgcgrxfr.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgcgrxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
tgcgrxfr.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnxfr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnxfr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnxfr.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
tgbtwnxfr.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
tgbtwnxfr.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
tgbtwnxfr.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
tgbtwnxfr | ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrxfr.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tgcgrxfr.m | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tgcgrxfr.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tgcgrxfr.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐺 ∈ TarskiG) |
6 | simplr 766 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝑒 ∈ 𝑃) | |
7 | tgbtwnxfr.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
8 | 7 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐸 ∈ 𝑃) |
9 | tgbtwnxfr.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
10 | 9 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐷 ∈ 𝑃) |
11 | tgbtwnxfr.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
12 | 11 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐹 ∈ 𝑃) |
13 | simprl 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝑒 ∈ (𝐷𝐼𝐹)) | |
14 | eqidd 2732 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐷 − 𝐹) = (𝐷 − 𝐹)) | |
15 | eqidd 2732 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝑒 − 𝐹) = (𝑒 − 𝐹)) | |
16 | tgcgrxfr.r | . . . . . 6 ⊢ ∼ = (cgrG‘𝐺) | |
17 | tgbtwnxfr.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
18 | 17 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐴 ∈ 𝑃) |
19 | tgbtwnxfr.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
20 | 19 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐵 ∈ 𝑃) |
21 | tgbtwnxfr.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
22 | 21 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐶 ∈ 𝑃) |
23 | simprr 770 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉) | |
24 | 1, 2, 3, 16, 5, 18, 20, 22, 10, 6, 12, 23 | trgcgrcom 28212 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐷𝑒𝐹”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
25 | tgbtwnxfr.2 | . . . . . . . . 9 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) | |
26 | 25 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
27 | 1, 2, 3, 16, 5, 10, 6, 12, 18, 20, 22, 24, 10, 8, 12, 26 | cgr3tr 28213 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐷𝑒𝐹”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
28 | 1, 2, 3, 16, 5, 10, 6, 12, 10, 8, 12, 27 | trgcgrcom 28212 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐷𝐸𝐹”〉 ∼ 〈“𝐷𝑒𝐹”〉) |
29 | 1, 2, 3, 16, 5, 10, 8, 12, 10, 6, 12, 28 | cgr3simp1 28204 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐷 − 𝐸) = (𝐷 − 𝑒)) |
30 | 1, 2, 3, 16, 5, 10, 8, 12, 10, 6, 12, 28 | cgr3simp2 28205 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐸 − 𝐹) = (𝑒 − 𝐹)) |
31 | 1, 2, 3, 5, 8, 12, 6, 12, 30 | tgcgrcomlr 28164 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐹 − 𝐸) = (𝐹 − 𝑒)) |
32 | 1, 2, 3, 5, 10, 6, 12, 8, 10, 6, 12, 6, 13, 13, 14, 15, 29, 31 | tgifscgr 28192 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝑒 − 𝐸) = (𝑒 − 𝑒)) |
33 | 1, 2, 3, 5, 6, 8, 6, 32 | axtgcgrid 28147 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝑒 = 𝐸) |
34 | 33, 13 | eqeltrrd 2833 | . 2 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐸 ∈ (𝐷𝐼𝐹)) |
35 | tgbtwnxfr.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
36 | 1, 2, 3, 16, 4, 17, 19, 21, 9, 7, 11, 25 | cgr3simp3 28206 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
37 | 1, 2, 3, 4, 21, 17, 11, 9, 36 | tgcgrcomlr 28164 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
38 | 1, 2, 3, 16, 4, 17, 19, 21, 9, 11, 35, 37 | tgcgrxfr 28202 | . 2 ⊢ (𝜑 → ∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) |
39 | 34, 38 | r19.29a 3161 | 1 ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 〈“cs3 14800 Basecbs 17151 distcds 17213 TarskiGcstrkg 28111 Itvcitv 28117 cgrGccgrg 28194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-oadd 8476 df-er 8709 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-dju 9902 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-xnn0 12552 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-hash 14298 df-word 14472 df-concat 14528 df-s1 14553 df-s2 14806 df-s3 14807 df-trkgc 28132 df-trkgb 28133 df-trkgcb 28134 df-trkg 28137 df-cgrg 28195 |
This theorem is referenced by: lnxfr 28250 tgfscgr 28252 legov 28269 legov2 28270 legtrd 28273 mirbtwni 28355 cgrabtwn 28510 cgrahl 28511 |
Copyright terms: Public domain | W3C validator |