Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgbtwnxfr | Structured version Visualization version GIF version |
Description: A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
Ref | Expression |
---|---|
tgcgrxfr.p | ⊢ 𝑃 = (Base‘𝐺) |
tgcgrxfr.m | ⊢ − = (dist‘𝐺) |
tgcgrxfr.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgcgrxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
tgcgrxfr.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnxfr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnxfr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnxfr.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
tgbtwnxfr.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
tgbtwnxfr.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
tgbtwnxfr.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
tgbtwnxfr | ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrxfr.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tgcgrxfr.m | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tgcgrxfr.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tgcgrxfr.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 722 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐺 ∈ TarskiG) |
6 | simplr 765 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝑒 ∈ 𝑃) | |
7 | tgbtwnxfr.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
8 | 7 | ad2antrr 722 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐸 ∈ 𝑃) |
9 | tgbtwnxfr.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
10 | 9 | ad2antrr 722 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐷 ∈ 𝑃) |
11 | tgbtwnxfr.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
12 | 11 | ad2antrr 722 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐹 ∈ 𝑃) |
13 | simprl 767 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝑒 ∈ (𝐷𝐼𝐹)) | |
14 | eqidd 2739 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐷 − 𝐹) = (𝐷 − 𝐹)) | |
15 | eqidd 2739 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝑒 − 𝐹) = (𝑒 − 𝐹)) | |
16 | tgcgrxfr.r | . . . . . 6 ⊢ ∼ = (cgrG‘𝐺) | |
17 | tgbtwnxfr.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
18 | 17 | ad2antrr 722 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐴 ∈ 𝑃) |
19 | tgbtwnxfr.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
20 | 19 | ad2antrr 722 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐵 ∈ 𝑃) |
21 | tgbtwnxfr.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
22 | 21 | ad2antrr 722 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐶 ∈ 𝑃) |
23 | simprr 769 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉) | |
24 | 1, 2, 3, 16, 5, 18, 20, 22, 10, 6, 12, 23 | trgcgrcom 26793 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐷𝑒𝐹”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
25 | tgbtwnxfr.2 | . . . . . . . . 9 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) | |
26 | 25 | ad2antrr 722 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
27 | 1, 2, 3, 16, 5, 10, 6, 12, 18, 20, 22, 24, 10, 8, 12, 26 | cgr3tr 26794 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐷𝑒𝐹”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
28 | 1, 2, 3, 16, 5, 10, 6, 12, 10, 8, 12, 27 | trgcgrcom 26793 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐷𝐸𝐹”〉 ∼ 〈“𝐷𝑒𝐹”〉) |
29 | 1, 2, 3, 16, 5, 10, 8, 12, 10, 6, 12, 28 | cgr3simp1 26785 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐷 − 𝐸) = (𝐷 − 𝑒)) |
30 | 1, 2, 3, 16, 5, 10, 8, 12, 10, 6, 12, 28 | cgr3simp2 26786 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐸 − 𝐹) = (𝑒 − 𝐹)) |
31 | 1, 2, 3, 5, 8, 12, 6, 12, 30 | tgcgrcomlr 26745 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐹 − 𝐸) = (𝐹 − 𝑒)) |
32 | 1, 2, 3, 5, 10, 6, 12, 8, 10, 6, 12, 6, 13, 13, 14, 15, 29, 31 | tgifscgr 26773 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝑒 − 𝐸) = (𝑒 − 𝑒)) |
33 | 1, 2, 3, 5, 6, 8, 6, 32 | axtgcgrid 26728 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝑒 = 𝐸) |
34 | 33, 13 | eqeltrrd 2840 | . 2 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐸 ∈ (𝐷𝐼𝐹)) |
35 | tgbtwnxfr.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
36 | 1, 2, 3, 16, 4, 17, 19, 21, 9, 7, 11, 25 | cgr3simp3 26787 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
37 | 1, 2, 3, 4, 21, 17, 11, 9, 36 | tgcgrcomlr 26745 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
38 | 1, 2, 3, 16, 4, 17, 19, 21, 9, 11, 35, 37 | tgcgrxfr 26783 | . 2 ⊢ (𝜑 → ∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) |
39 | 34, 38 | r19.29a 3217 | 1 ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 〈“cs3 14483 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 cgrGccgrg 26775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 df-cgrg 26776 |
This theorem is referenced by: lnxfr 26831 tgfscgr 26833 legov 26850 legov2 26851 legtrd 26854 mirbtwni 26936 cgrabtwn 27091 cgrahl 27092 |
Copyright terms: Public domain | W3C validator |