| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnxfr | Structured version Visualization version GIF version | ||
| Description: A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| tgcgrxfr.p | ⊢ 𝑃 = (Base‘𝐺) |
| tgcgrxfr.m | ⊢ − = (dist‘𝐺) |
| tgcgrxfr.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tgcgrxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
| tgcgrxfr.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwnxfr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnxfr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgbtwnxfr.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| tgbtwnxfr.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| tgbtwnxfr.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| tgbtwnxfr.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| Ref | Expression |
|---|---|
| tgbtwnxfr | ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcgrxfr.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tgcgrxfr.m | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | tgcgrxfr.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tgcgrxfr.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐺 ∈ TarskiG) |
| 6 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝑒 ∈ 𝑃) | |
| 7 | tgbtwnxfr.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 8 | 7 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐸 ∈ 𝑃) |
| 9 | tgbtwnxfr.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 10 | 9 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐷 ∈ 𝑃) |
| 11 | tgbtwnxfr.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 12 | 11 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐹 ∈ 𝑃) |
| 13 | simprl 770 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝑒 ∈ (𝐷𝐼𝐹)) | |
| 14 | eqidd 2732 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐷 − 𝐹) = (𝐷 − 𝐹)) | |
| 15 | eqidd 2732 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝑒 − 𝐹) = (𝑒 − 𝐹)) | |
| 16 | tgcgrxfr.r | . . . . . 6 ⊢ ∼ = (cgrG‘𝐺) | |
| 17 | tgbtwnxfr.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 18 | 17 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐴 ∈ 𝑃) |
| 19 | tgbtwnxfr.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 20 | 19 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐵 ∈ 𝑃) |
| 21 | tgbtwnxfr.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 22 | 21 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐶 ∈ 𝑃) |
| 23 | simprr 772 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉) | |
| 24 | 1, 2, 3, 16, 5, 18, 20, 22, 10, 6, 12, 23 | trgcgrcom 28512 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐷𝑒𝐹”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
| 25 | tgbtwnxfr.2 | . . . . . . . . 9 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) | |
| 26 | 25 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| 27 | 1, 2, 3, 16, 5, 10, 6, 12, 18, 20, 22, 24, 10, 8, 12, 26 | cgr3tr 28513 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐷𝑒𝐹”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| 28 | 1, 2, 3, 16, 5, 10, 6, 12, 10, 8, 12, 27 | trgcgrcom 28512 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐷𝐸𝐹”〉 ∼ 〈“𝐷𝑒𝐹”〉) |
| 29 | 1, 2, 3, 16, 5, 10, 8, 12, 10, 6, 12, 28 | cgr3simp1 28504 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐷 − 𝐸) = (𝐷 − 𝑒)) |
| 30 | 1, 2, 3, 16, 5, 10, 8, 12, 10, 6, 12, 28 | cgr3simp2 28505 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐸 − 𝐹) = (𝑒 − 𝐹)) |
| 31 | 1, 2, 3, 5, 8, 12, 6, 12, 30 | tgcgrcomlr 28464 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐹 − 𝐸) = (𝐹 − 𝑒)) |
| 32 | 1, 2, 3, 5, 10, 6, 12, 8, 10, 6, 12, 6, 13, 13, 14, 15, 29, 31 | tgifscgr 28492 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝑒 − 𝐸) = (𝑒 − 𝑒)) |
| 33 | 1, 2, 3, 5, 6, 8, 6, 32 | axtgcgrid 28447 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝑒 = 𝐸) |
| 34 | 33, 13 | eqeltrrd 2832 | . 2 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐸 ∈ (𝐷𝐼𝐹)) |
| 35 | tgbtwnxfr.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 36 | 1, 2, 3, 16, 4, 17, 19, 21, 9, 7, 11, 25 | cgr3simp3 28506 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
| 37 | 1, 2, 3, 4, 21, 17, 11, 9, 36 | tgcgrcomlr 28464 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
| 38 | 1, 2, 3, 16, 4, 17, 19, 21, 9, 11, 35, 37 | tgcgrxfr 28502 | . 2 ⊢ (𝜑 → ∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) |
| 39 | 34, 38 | r19.29a 3140 | 1 ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 〈“cs3 14755 Basecbs 17126 distcds 17176 TarskiGcstrkg 28411 Itvcitv 28417 cgrGccgrg 28494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9800 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-n0 12388 df-xnn0 12461 df-z 12475 df-uz 12739 df-fz 13414 df-fzo 13561 df-hash 14244 df-word 14427 df-concat 14484 df-s1 14510 df-s2 14761 df-s3 14762 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkg 28437 df-cgrg 28495 |
| This theorem is referenced by: lnxfr 28550 tgfscgr 28552 legov 28569 legov2 28570 legtrd 28573 mirbtwni 28655 cgrabtwn 28810 cgrahl 28811 |
| Copyright terms: Public domain | W3C validator |