| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnxfr | Structured version Visualization version GIF version | ||
| Description: A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| tgcgrxfr.p | ⊢ 𝑃 = (Base‘𝐺) |
| tgcgrxfr.m | ⊢ − = (dist‘𝐺) |
| tgcgrxfr.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tgcgrxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
| tgcgrxfr.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwnxfr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnxfr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgbtwnxfr.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| tgbtwnxfr.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| tgbtwnxfr.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| tgbtwnxfr.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| Ref | Expression |
|---|---|
| tgbtwnxfr | ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcgrxfr.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tgcgrxfr.m | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | tgcgrxfr.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tgcgrxfr.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐺 ∈ TarskiG) |
| 6 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝑒 ∈ 𝑃) | |
| 7 | tgbtwnxfr.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 8 | 7 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐸 ∈ 𝑃) |
| 9 | tgbtwnxfr.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 10 | 9 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐷 ∈ 𝑃) |
| 11 | tgbtwnxfr.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 12 | 11 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐹 ∈ 𝑃) |
| 13 | simprl 770 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝑒 ∈ (𝐷𝐼𝐹)) | |
| 14 | eqidd 2730 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐷 − 𝐹) = (𝐷 − 𝐹)) | |
| 15 | eqidd 2730 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝑒 − 𝐹) = (𝑒 − 𝐹)) | |
| 16 | tgcgrxfr.r | . . . . . 6 ⊢ ∼ = (cgrG‘𝐺) | |
| 17 | tgbtwnxfr.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 18 | 17 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐴 ∈ 𝑃) |
| 19 | tgbtwnxfr.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 20 | 19 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐵 ∈ 𝑃) |
| 21 | tgbtwnxfr.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 22 | 21 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐶 ∈ 𝑃) |
| 23 | simprr 772 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉) | |
| 24 | 1, 2, 3, 16, 5, 18, 20, 22, 10, 6, 12, 23 | trgcgrcom 28510 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐷𝑒𝐹”〉 ∼ 〈“𝐴𝐵𝐶”〉) |
| 25 | tgbtwnxfr.2 | . . . . . . . . 9 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) | |
| 26 | 25 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| 27 | 1, 2, 3, 16, 5, 10, 6, 12, 18, 20, 22, 24, 10, 8, 12, 26 | cgr3tr 28511 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐷𝑒𝐹”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| 28 | 1, 2, 3, 16, 5, 10, 6, 12, 10, 8, 12, 27 | trgcgrcom 28510 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 〈“𝐷𝐸𝐹”〉 ∼ 〈“𝐷𝑒𝐹”〉) |
| 29 | 1, 2, 3, 16, 5, 10, 8, 12, 10, 6, 12, 28 | cgr3simp1 28502 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐷 − 𝐸) = (𝐷 − 𝑒)) |
| 30 | 1, 2, 3, 16, 5, 10, 8, 12, 10, 6, 12, 28 | cgr3simp2 28503 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐸 − 𝐹) = (𝑒 − 𝐹)) |
| 31 | 1, 2, 3, 5, 8, 12, 6, 12, 30 | tgcgrcomlr 28462 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝐹 − 𝐸) = (𝐹 − 𝑒)) |
| 32 | 1, 2, 3, 5, 10, 6, 12, 8, 10, 6, 12, 6, 13, 13, 14, 15, 29, 31 | tgifscgr 28490 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → (𝑒 − 𝐸) = (𝑒 − 𝑒)) |
| 33 | 1, 2, 3, 5, 6, 8, 6, 32 | axtgcgrid 28445 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝑒 = 𝐸) |
| 34 | 33, 13 | eqeltrrd 2829 | . 2 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝑃) ∧ (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) → 𝐸 ∈ (𝐷𝐼𝐹)) |
| 35 | tgbtwnxfr.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 36 | 1, 2, 3, 16, 4, 17, 19, 21, 9, 7, 11, 25 | cgr3simp3 28504 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
| 37 | 1, 2, 3, 4, 21, 17, 11, 9, 36 | tgcgrcomlr 28462 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
| 38 | 1, 2, 3, 16, 4, 17, 19, 21, 9, 11, 35, 37 | tgcgrxfr 28500 | . 2 ⊢ (𝜑 → ∃𝑒 ∈ 𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝑒𝐹”〉)) |
| 39 | 34, 38 | r19.29a 3141 | 1 ⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6500 (class class class)co 7370 〈“cs3 14786 Basecbs 17157 distcds 17207 TarskiGcstrkg 28409 Itvcitv 28415 cgrGccgrg 28492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-oadd 8416 df-er 8649 df-pm 8780 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-dju 9833 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-n0 12422 df-xnn0 12495 df-z 12509 df-uz 12773 df-fz 13448 df-fzo 13595 df-hash 14275 df-word 14458 df-concat 14515 df-s1 14540 df-s2 14792 df-s3 14793 df-trkgc 28430 df-trkgb 28431 df-trkgcb 28432 df-trkg 28435 df-cgrg 28493 |
| This theorem is referenced by: lnxfr 28548 tgfscgr 28550 legov 28567 legov2 28568 legtrd 28571 mirbtwni 28653 cgrabtwn 28808 cgrahl 28809 |
| Copyright terms: Public domain | W3C validator |