![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwndiff | Structured version Visualization version GIF version |
Description: There is always a 𝑐 distinct from 𝐵 such that 𝐵 lies between 𝐴 and 𝑐. Theorem 3.14 of [Schwabhauser] p. 32. The condition "the space is of dimension 1 or more" is written here as 2 ≤ (♯‘𝑃) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tgbtwndiff.p | ⊢ 𝑃 = (Base‘𝐺) |
tgbtwndiff.d | ⊢ − = (dist‘𝐺) |
tgbtwndiff.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgbtwndiff.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwndiff.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwndiff.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwndiff.l | ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) |
Ref | Expression |
---|---|
tgbtwndiff | ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwndiff.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tgbtwndiff.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tgbtwndiff.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tgbtwndiff.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 722 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝐺 ∈ TarskiG) |
6 | tgbtwndiff.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad3antrrr 722 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝐴 ∈ 𝑃) |
8 | tgbtwndiff.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | ad3antrrr 722 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝐵 ∈ 𝑃) |
10 | simpllr 794 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝑢 ∈ 𝑃) | |
11 | simplr 786 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝑣 ∈ 𝑃) | |
12 | 1, 2, 3, 5, 7, 9, 10, 11 | axtgsegcon 25715 | . . 3 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣))) |
13 | 5 | ad3antrrr 722 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝐺 ∈ TarskiG) |
14 | 10 | ad3antrrr 722 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 ∈ 𝑃) |
15 | 11 | ad3antrrr 722 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝑣 ∈ 𝑃) |
16 | 9 | ad3antrrr 722 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵 ∈ 𝑃) |
17 | simpr 478 | . . . . . . . . . . 11 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵 = 𝑐) | |
18 | 17 | oveq2d 6894 | . . . . . . . . . 10 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 − 𝐵) = (𝐵 − 𝑐)) |
19 | simplr 786 | . . . . . . . . . 10 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 − 𝑐) = (𝑢 − 𝑣)) | |
20 | 18, 19 | eqtr2d 2834 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → (𝑢 − 𝑣) = (𝐵 − 𝐵)) |
21 | 1, 2, 3, 13, 14, 15, 16, 20 | axtgcgrid 25714 | . . . . . . . 8 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 = 𝑣) |
22 | simp-4r 804 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 ≠ 𝑣) | |
23 | 22 | neneqd 2976 | . . . . . . . 8 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → ¬ 𝑢 = 𝑣) |
24 | 21, 23 | pm2.65da 852 | . . . . . . 7 ⊢ ((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) → ¬ 𝐵 = 𝑐) |
25 | 24 | neqned 2978 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) → 𝐵 ≠ 𝑐) |
26 | 25 | ex 402 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) → ((𝐵 − 𝑐) = (𝑢 − 𝑣) → 𝐵 ≠ 𝑐)) |
27 | 26 | anim2d 606 | . . . 4 ⊢ (((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) → (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐))) |
28 | 27 | reximdva 3197 | . . 3 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → (∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐))) |
29 | 12, 28 | mpd 15 | . 2 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐)) |
30 | tgbtwndiff.l | . . 3 ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) | |
31 | 1, 2, 3, 4, 30 | tglowdim1 25751 | . 2 ⊢ (𝜑 → ∃𝑢 ∈ 𝑃 ∃𝑣 ∈ 𝑃 𝑢 ≠ 𝑣) |
32 | 29, 31 | r19.29vva 3262 | 1 ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∃wrex 3090 class class class wbr 4843 ‘cfv 6101 (class class class)co 6878 ≤ cle 10364 2c2 11368 ♯chash 13370 Basecbs 16184 distcds 16276 TarskiGcstrkg 25681 Itvcitv 25687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-n0 11581 df-xnn0 11653 df-z 11667 df-uz 11931 df-fz 12581 df-hash 13371 df-trkgc 25699 df-trkgcb 25701 df-trkg 25704 |
This theorem is referenced by: tgifscgr 25759 tgcgrxfr 25769 tgbtwnconn3 25828 legtrid 25842 hlcgrex 25867 hlcgreulem 25868 midexlem 25943 hpgerlem 26013 |
Copyright terms: Public domain | W3C validator |