MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwndiff Structured version   Visualization version   GIF version

Theorem tgbtwndiff 28440
Description: There is always a 𝑐 distinct from 𝐵 such that 𝐵 lies between 𝐴 and 𝑐. Theorem 3.14 of [Schwabhauser] p. 32. The condition "the space is of dimension 1 or more" is written here as 2 ≤ (♯‘𝑃) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tgbtwndiff.p 𝑃 = (Base‘𝐺)
tgbtwndiff.d = (dist‘𝐺)
tgbtwndiff.i 𝐼 = (Itv‘𝐺)
tgbtwndiff.g (𝜑𝐺 ∈ TarskiG)
tgbtwndiff.a (𝜑𝐴𝑃)
tgbtwndiff.b (𝜑𝐵𝑃)
tgbtwndiff.l (𝜑 → 2 ≤ (♯‘𝑃))
Assertion
Ref Expression
tgbtwndiff (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐))
Distinct variable groups:   ,𝑐   𝐴,𝑐   𝐵,𝑐   𝐼,𝑐   𝑃,𝑐   𝜑,𝑐
Allowed substitution hint:   𝐺(𝑐)

Proof of Theorem tgbtwndiff
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgbtwndiff.p . . . 4 𝑃 = (Base‘𝐺)
2 tgbtwndiff.d . . . 4 = (dist‘𝐺)
3 tgbtwndiff.i . . . 4 𝐼 = (Itv‘𝐺)
4 tgbtwndiff.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 730 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝐺 ∈ TarskiG)
6 tgbtwndiff.a . . . . 5 (𝜑𝐴𝑃)
76ad3antrrr 730 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝐴𝑃)
8 tgbtwndiff.b . . . . 5 (𝜑𝐵𝑃)
98ad3antrrr 730 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝐵𝑃)
10 simpllr 775 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝑢𝑃)
11 simplr 768 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝑣𝑃)
121, 2, 3, 5, 7, 9, 10, 11axtgsegcon 28398 . . 3 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑢 𝑣)))
135ad3antrrr 730 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝐺 ∈ TarskiG)
1410ad3antrrr 730 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢𝑃)
1511ad3antrrr 730 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑣𝑃)
169ad3antrrr 730 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵𝑃)
17 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵 = 𝑐)
1817oveq2d 7406 . . . . . . . . . 10 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 𝐵) = (𝐵 𝑐))
19 simplr 768 . . . . . . . . . 10 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 𝑐) = (𝑢 𝑣))
2018, 19eqtr2d 2766 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → (𝑢 𝑣) = (𝐵 𝐵))
211, 2, 3, 13, 14, 15, 16, 20axtgcgrid 28397 . . . . . . . 8 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 = 𝑣)
22 simp-4r 783 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢𝑣)
2322neneqd 2931 . . . . . . . 8 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → ¬ 𝑢 = 𝑣)
2421, 23pm2.65da 816 . . . . . . 7 ((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → ¬ 𝐵 = 𝑐)
2524neqned 2933 . . . . . 6 ((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → 𝐵𝑐)
2625ex 412 . . . . 5 (((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) → ((𝐵 𝑐) = (𝑢 𝑣) → 𝐵𝑐))
2726anim2d 612 . . . 4 (((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐)))
2827reximdva 3147 . . 3 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → (∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐)))
2912, 28mpd 15 . 2 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐))
30 tgbtwndiff.l . . 3 (𝜑 → 2 ≤ (♯‘𝑃))
311, 2, 3, 4, 30tglowdim1 28434 . 2 (𝜑 → ∃𝑢𝑃𝑣𝑃 𝑢𝑣)
3229, 31r19.29vva 3198 1 (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  cle 11216  2c2 12248  chash 14302  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-trkgc 28382  df-trkgcb 28384  df-trkg 28387
This theorem is referenced by:  tgifscgr  28442  tgcgrxfr  28452  tgbtwnconn3  28511  legtrid  28525  hlcgrex  28550  hlcgreulem  28551  midexlem  28626  hpgerlem  28699
  Copyright terms: Public domain W3C validator