MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwndiff Structured version   Visualization version   GIF version

Theorem tgbtwndiff 28486
Description: There is always a 𝑐 distinct from 𝐵 such that 𝐵 lies between 𝐴 and 𝑐. Theorem 3.14 of [Schwabhauser] p. 32. The condition "the space is of dimension 1 or more" is written here as 2 ≤ (♯‘𝑃) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tgbtwndiff.p 𝑃 = (Base‘𝐺)
tgbtwndiff.d = (dist‘𝐺)
tgbtwndiff.i 𝐼 = (Itv‘𝐺)
tgbtwndiff.g (𝜑𝐺 ∈ TarskiG)
tgbtwndiff.a (𝜑𝐴𝑃)
tgbtwndiff.b (𝜑𝐵𝑃)
tgbtwndiff.l (𝜑 → 2 ≤ (♯‘𝑃))
Assertion
Ref Expression
tgbtwndiff (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐))
Distinct variable groups:   ,𝑐   𝐴,𝑐   𝐵,𝑐   𝐼,𝑐   𝑃,𝑐   𝜑,𝑐
Allowed substitution hint:   𝐺(𝑐)

Proof of Theorem tgbtwndiff
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgbtwndiff.p . . . 4 𝑃 = (Base‘𝐺)
2 tgbtwndiff.d . . . 4 = (dist‘𝐺)
3 tgbtwndiff.i . . . 4 𝐼 = (Itv‘𝐺)
4 tgbtwndiff.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 730 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝐺 ∈ TarskiG)
6 tgbtwndiff.a . . . . 5 (𝜑𝐴𝑃)
76ad3antrrr 730 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝐴𝑃)
8 tgbtwndiff.b . . . . 5 (𝜑𝐵𝑃)
98ad3antrrr 730 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝐵𝑃)
10 simpllr 775 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝑢𝑃)
11 simplr 768 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝑣𝑃)
121, 2, 3, 5, 7, 9, 10, 11axtgsegcon 28444 . . 3 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑢 𝑣)))
135ad3antrrr 730 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝐺 ∈ TarskiG)
1410ad3antrrr 730 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢𝑃)
1511ad3antrrr 730 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑣𝑃)
169ad3antrrr 730 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵𝑃)
17 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵 = 𝑐)
1817oveq2d 7385 . . . . . . . . . 10 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 𝐵) = (𝐵 𝑐))
19 simplr 768 . . . . . . . . . 10 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 𝑐) = (𝑢 𝑣))
2018, 19eqtr2d 2765 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → (𝑢 𝑣) = (𝐵 𝐵))
211, 2, 3, 13, 14, 15, 16, 20axtgcgrid 28443 . . . . . . . 8 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 = 𝑣)
22 simp-4r 783 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢𝑣)
2322neneqd 2930 . . . . . . . 8 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → ¬ 𝑢 = 𝑣)
2421, 23pm2.65da 816 . . . . . . 7 ((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → ¬ 𝐵 = 𝑐)
2524neqned 2932 . . . . . 6 ((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → 𝐵𝑐)
2625ex 412 . . . . 5 (((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) → ((𝐵 𝑐) = (𝑢 𝑣) → 𝐵𝑐))
2726anim2d 612 . . . 4 (((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐)))
2827reximdva 3146 . . 3 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → (∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐)))
2912, 28mpd 15 . 2 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐))
30 tgbtwndiff.l . . 3 (𝜑 → 2 ≤ (♯‘𝑃))
311, 2, 3, 4, 30tglowdim1 28480 . 2 (𝜑 → ∃𝑢𝑃𝑣𝑃 𝑢𝑣)
3229, 31r19.29vva 3195 1 (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  cle 11185  2c2 12217  chash 14271  Basecbs 17155  distcds 17205  TarskiGcstrkg 28407  Itvcitv 28413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272  df-trkgc 28428  df-trkgcb 28430  df-trkg 28433
This theorem is referenced by:  tgifscgr  28488  tgcgrxfr  28498  tgbtwnconn3  28557  legtrid  28571  hlcgrex  28596  hlcgreulem  28597  midexlem  28672  hpgerlem  28745
  Copyright terms: Public domain W3C validator