Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgbtwndiff | Structured version Visualization version GIF version |
Description: There is always a 𝑐 distinct from 𝐵 such that 𝐵 lies between 𝐴 and 𝑐. Theorem 3.14 of [Schwabhauser] p. 32. The condition "the space is of dimension 1 or more" is written here as 2 ≤ (♯‘𝑃) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tgbtwndiff.p | ⊢ 𝑃 = (Base‘𝐺) |
tgbtwndiff.d | ⊢ − = (dist‘𝐺) |
tgbtwndiff.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgbtwndiff.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwndiff.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwndiff.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwndiff.l | ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) |
Ref | Expression |
---|---|
tgbtwndiff | ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwndiff.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tgbtwndiff.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tgbtwndiff.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tgbtwndiff.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 727 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝐺 ∈ TarskiG) |
6 | tgbtwndiff.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad3antrrr 727 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝐴 ∈ 𝑃) |
8 | tgbtwndiff.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | ad3antrrr 727 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝐵 ∈ 𝑃) |
10 | simpllr 773 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝑢 ∈ 𝑃) | |
11 | simplr 766 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝑣 ∈ 𝑃) | |
12 | 1, 2, 3, 5, 7, 9, 10, 11 | axtgsegcon 26825 | . . 3 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣))) |
13 | 5 | ad3antrrr 727 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝐺 ∈ TarskiG) |
14 | 10 | ad3antrrr 727 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 ∈ 𝑃) |
15 | 11 | ad3antrrr 727 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝑣 ∈ 𝑃) |
16 | 9 | ad3antrrr 727 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵 ∈ 𝑃) |
17 | simpr 485 | . . . . . . . . . . 11 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵 = 𝑐) | |
18 | 17 | oveq2d 7291 | . . . . . . . . . 10 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 − 𝐵) = (𝐵 − 𝑐)) |
19 | simplr 766 | . . . . . . . . . 10 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 − 𝑐) = (𝑢 − 𝑣)) | |
20 | 18, 19 | eqtr2d 2779 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → (𝑢 − 𝑣) = (𝐵 − 𝐵)) |
21 | 1, 2, 3, 13, 14, 15, 16, 20 | axtgcgrid 26824 | . . . . . . . 8 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 = 𝑣) |
22 | simp-4r 781 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 ≠ 𝑣) | |
23 | 22 | neneqd 2948 | . . . . . . . 8 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → ¬ 𝑢 = 𝑣) |
24 | 21, 23 | pm2.65da 814 | . . . . . . 7 ⊢ ((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) → ¬ 𝐵 = 𝑐) |
25 | 24 | neqned 2950 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) → 𝐵 ≠ 𝑐) |
26 | 25 | ex 413 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) → ((𝐵 − 𝑐) = (𝑢 − 𝑣) → 𝐵 ≠ 𝑐)) |
27 | 26 | anim2d 612 | . . . 4 ⊢ (((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) → (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐))) |
28 | 27 | reximdva 3203 | . . 3 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → (∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐))) |
29 | 12, 28 | mpd 15 | . 2 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐)) |
30 | tgbtwndiff.l | . . 3 ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) | |
31 | 1, 2, 3, 4, 30 | tglowdim1 26861 | . 2 ⊢ (𝜑 → ∃𝑢 ∈ 𝑃 ∃𝑣 ∈ 𝑃 𝑢 ≠ 𝑣) |
32 | 29, 31 | r19.29vva 3266 | 1 ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ≤ cle 11010 2c2 12028 ♯chash 14044 Basecbs 16912 distcds 16971 TarskiGcstrkg 26788 Itvcitv 26794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 df-trkgc 26809 df-trkgcb 26811 df-trkg 26814 |
This theorem is referenced by: tgifscgr 26869 tgcgrxfr 26879 tgbtwnconn3 26938 legtrid 26952 hlcgrex 26977 hlcgreulem 26978 midexlem 27053 hpgerlem 27126 |
Copyright terms: Public domain | W3C validator |