MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwndiff Structured version   Visualization version   GIF version

Theorem tgbtwndiff 26771
Description: There is always a 𝑐 distinct from 𝐵 such that 𝐵 lies between 𝐴 and 𝑐. Theorem 3.14 of [Schwabhauser] p. 32. The condition "the space is of dimension 1 or more" is written here as 2 ≤ (♯‘𝑃) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tgbtwndiff.p 𝑃 = (Base‘𝐺)
tgbtwndiff.d = (dist‘𝐺)
tgbtwndiff.i 𝐼 = (Itv‘𝐺)
tgbtwndiff.g (𝜑𝐺 ∈ TarskiG)
tgbtwndiff.a (𝜑𝐴𝑃)
tgbtwndiff.b (𝜑𝐵𝑃)
tgbtwndiff.l (𝜑 → 2 ≤ (♯‘𝑃))
Assertion
Ref Expression
tgbtwndiff (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐))
Distinct variable groups:   ,𝑐   𝐴,𝑐   𝐵,𝑐   𝐼,𝑐   𝑃,𝑐   𝜑,𝑐
Allowed substitution hint:   𝐺(𝑐)

Proof of Theorem tgbtwndiff
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgbtwndiff.p . . . 4 𝑃 = (Base‘𝐺)
2 tgbtwndiff.d . . . 4 = (dist‘𝐺)
3 tgbtwndiff.i . . . 4 𝐼 = (Itv‘𝐺)
4 tgbtwndiff.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 726 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝐺 ∈ TarskiG)
6 tgbtwndiff.a . . . . 5 (𝜑𝐴𝑃)
76ad3antrrr 726 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝐴𝑃)
8 tgbtwndiff.b . . . . 5 (𝜑𝐵𝑃)
98ad3antrrr 726 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝐵𝑃)
10 simpllr 772 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝑢𝑃)
11 simplr 765 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝑣𝑃)
121, 2, 3, 5, 7, 9, 10, 11axtgsegcon 26729 . . 3 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑢 𝑣)))
135ad3antrrr 726 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝐺 ∈ TarskiG)
1410ad3antrrr 726 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢𝑃)
1511ad3antrrr 726 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑣𝑃)
169ad3antrrr 726 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵𝑃)
17 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵 = 𝑐)
1817oveq2d 7271 . . . . . . . . . 10 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 𝐵) = (𝐵 𝑐))
19 simplr 765 . . . . . . . . . 10 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 𝑐) = (𝑢 𝑣))
2018, 19eqtr2d 2779 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → (𝑢 𝑣) = (𝐵 𝐵))
211, 2, 3, 13, 14, 15, 16, 20axtgcgrid 26728 . . . . . . . 8 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 = 𝑣)
22 simp-4r 780 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢𝑣)
2322neneqd 2947 . . . . . . . 8 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → ¬ 𝑢 = 𝑣)
2421, 23pm2.65da 813 . . . . . . 7 ((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → ¬ 𝐵 = 𝑐)
2524neqned 2949 . . . . . 6 ((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → 𝐵𝑐)
2625ex 412 . . . . 5 (((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) → ((𝐵 𝑐) = (𝑢 𝑣) → 𝐵𝑐))
2726anim2d 611 . . . 4 (((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐)))
2827reximdva 3202 . . 3 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → (∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐)))
2912, 28mpd 15 . 2 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐))
30 tgbtwndiff.l . . 3 (𝜑 → 2 ≤ (♯‘𝑃))
311, 2, 3, 4, 30tglowdim1 26765 . 2 (𝜑 → ∃𝑢𝑃𝑣𝑃 𝑢𝑣)
3229, 31r19.29vva 3263 1 (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  cle 10941  2c2 11958  chash 13972  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-trkgc 26713  df-trkgcb 26715  df-trkg 26718
This theorem is referenced by:  tgifscgr  26773  tgcgrxfr  26783  tgbtwnconn3  26842  legtrid  26856  hlcgrex  26881  hlcgreulem  26882  midexlem  26957  hpgerlem  27030
  Copyright terms: Public domain W3C validator