![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwndiff | Structured version Visualization version GIF version |
Description: There is always a 𝑐 distinct from 𝐵 such that 𝐵 lies between 𝐴 and 𝑐. Theorem 3.14 of [Schwabhauser] p. 32. The condition "the space is of dimension 1 or more" is written here as 2 ≤ (♯‘𝑃) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tgbtwndiff.p | ⊢ 𝑃 = (Base‘𝐺) |
tgbtwndiff.d | ⊢ − = (dist‘𝐺) |
tgbtwndiff.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgbtwndiff.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwndiff.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwndiff.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwndiff.l | ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) |
Ref | Expression |
---|---|
tgbtwndiff | ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwndiff.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tgbtwndiff.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tgbtwndiff.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tgbtwndiff.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 729 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝐺 ∈ TarskiG) |
6 | tgbtwndiff.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | ad3antrrr 729 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝐴 ∈ 𝑃) |
8 | tgbtwndiff.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | ad3antrrr 729 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝐵 ∈ 𝑃) |
10 | simpllr 775 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝑢 ∈ 𝑃) | |
11 | simplr 768 | . . . 4 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → 𝑣 ∈ 𝑃) | |
12 | 1, 2, 3, 5, 7, 9, 10, 11 | axtgsegcon 27695 | . . 3 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣))) |
13 | 5 | ad3antrrr 729 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝐺 ∈ TarskiG) |
14 | 10 | ad3antrrr 729 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 ∈ 𝑃) |
15 | 11 | ad3antrrr 729 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝑣 ∈ 𝑃) |
16 | 9 | ad3antrrr 729 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵 ∈ 𝑃) |
17 | simpr 486 | . . . . . . . . . . 11 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵 = 𝑐) | |
18 | 17 | oveq2d 7420 | . . . . . . . . . 10 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 − 𝐵) = (𝐵 − 𝑐)) |
19 | simplr 768 | . . . . . . . . . 10 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 − 𝑐) = (𝑢 − 𝑣)) | |
20 | 18, 19 | eqtr2d 2774 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → (𝑢 − 𝑣) = (𝐵 − 𝐵)) |
21 | 1, 2, 3, 13, 14, 15, 16, 20 | axtgcgrid 27694 | . . . . . . . 8 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 = 𝑣) |
22 | simp-4r 783 | . . . . . . . . 9 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 ≠ 𝑣) | |
23 | 22 | neneqd 2946 | . . . . . . . 8 ⊢ (((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) ∧ 𝐵 = 𝑐) → ¬ 𝑢 = 𝑣) |
24 | 21, 23 | pm2.65da 816 | . . . . . . 7 ⊢ ((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) → ¬ 𝐵 = 𝑐) |
25 | 24 | neqned 2948 | . . . . . 6 ⊢ ((((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) → 𝐵 ≠ 𝑐) |
26 | 25 | ex 414 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) → ((𝐵 − 𝑐) = (𝑢 − 𝑣) → 𝐵 ≠ 𝑐)) |
27 | 26 | anim2d 613 | . . . 4 ⊢ (((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) ∧ 𝑐 ∈ 𝑃) → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) → (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐))) |
28 | 27 | reximdva 3169 | . . 3 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → (∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 − 𝑐) = (𝑢 − 𝑣)) → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐))) |
29 | 12, 28 | mpd 15 | . 2 ⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑃) ∧ 𝑣 ∈ 𝑃) ∧ 𝑢 ≠ 𝑣) → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐)) |
30 | tgbtwndiff.l | . . 3 ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) | |
31 | 1, 2, 3, 4, 30 | tglowdim1 27731 | . 2 ⊢ (𝜑 → ∃𝑢 ∈ 𝑃 ∃𝑣 ∈ 𝑃 𝑢 ≠ 𝑣) |
32 | 29, 31 | r19.29vva 3214 | 1 ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵 ≠ 𝑐)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∃wrex 3071 class class class wbr 5147 ‘cfv 6540 (class class class)co 7404 ≤ cle 11245 2c2 12263 ♯chash 14286 Basecbs 17140 distcds 17202 TarskiGcstrkg 27658 Itvcitv 27664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 df-trkgc 27679 df-trkgcb 27681 df-trkg 27684 |
This theorem is referenced by: tgifscgr 27739 tgcgrxfr 27749 tgbtwnconn3 27808 legtrid 27822 hlcgrex 27847 hlcgreulem 27848 midexlem 27923 hpgerlem 27996 |
Copyright terms: Public domain | W3C validator |