MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwndiff Structured version   Visualization version   GIF version

Theorem tgbtwndiff 28532
Description: There is always a 𝑐 distinct from 𝐵 such that 𝐵 lies between 𝐴 and 𝑐. Theorem 3.14 of [Schwabhauser] p. 32. The condition "the space is of dimension 1 or more" is written here as 2 ≤ (♯‘𝑃) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tgbtwndiff.p 𝑃 = (Base‘𝐺)
tgbtwndiff.d = (dist‘𝐺)
tgbtwndiff.i 𝐼 = (Itv‘𝐺)
tgbtwndiff.g (𝜑𝐺 ∈ TarskiG)
tgbtwndiff.a (𝜑𝐴𝑃)
tgbtwndiff.b (𝜑𝐵𝑃)
tgbtwndiff.l (𝜑 → 2 ≤ (♯‘𝑃))
Assertion
Ref Expression
tgbtwndiff (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐))
Distinct variable groups:   ,𝑐   𝐴,𝑐   𝐵,𝑐   𝐼,𝑐   𝑃,𝑐   𝜑,𝑐
Allowed substitution hint:   𝐺(𝑐)

Proof of Theorem tgbtwndiff
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgbtwndiff.p . . . 4 𝑃 = (Base‘𝐺)
2 tgbtwndiff.d . . . 4 = (dist‘𝐺)
3 tgbtwndiff.i . . . 4 𝐼 = (Itv‘𝐺)
4 tgbtwndiff.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 729 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝐺 ∈ TarskiG)
6 tgbtwndiff.a . . . . 5 (𝜑𝐴𝑃)
76ad3antrrr 729 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝐴𝑃)
8 tgbtwndiff.b . . . . 5 (𝜑𝐵𝑃)
98ad3antrrr 729 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝐵𝑃)
10 simpllr 775 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝑢𝑃)
11 simplr 768 . . . 4 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → 𝑣𝑃)
121, 2, 3, 5, 7, 9, 10, 11axtgsegcon 28490 . . 3 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑢 𝑣)))
135ad3antrrr 729 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝐺 ∈ TarskiG)
1410ad3antrrr 729 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢𝑃)
1511ad3antrrr 729 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑣𝑃)
169ad3antrrr 729 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵𝑃)
17 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝐵 = 𝑐)
1817oveq2d 7464 . . . . . . . . . 10 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 𝐵) = (𝐵 𝑐))
19 simplr 768 . . . . . . . . . 10 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → (𝐵 𝑐) = (𝑢 𝑣))
2018, 19eqtr2d 2781 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → (𝑢 𝑣) = (𝐵 𝐵))
211, 2, 3, 13, 14, 15, 16, 20axtgcgrid 28489 . . . . . . . 8 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢 = 𝑣)
22 simp-4r 783 . . . . . . . . 9 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → 𝑢𝑣)
2322neneqd 2951 . . . . . . . 8 (((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) ∧ 𝐵 = 𝑐) → ¬ 𝑢 = 𝑣)
2421, 23pm2.65da 816 . . . . . . 7 ((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → ¬ 𝐵 = 𝑐)
2524neqned 2953 . . . . . 6 ((((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → 𝐵𝑐)
2625ex 412 . . . . 5 (((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) → ((𝐵 𝑐) = (𝑢 𝑣) → 𝐵𝑐))
2726anim2d 611 . . . 4 (((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) ∧ 𝑐𝑃) → ((𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐)))
2827reximdva 3174 . . 3 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → (∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ (𝐵 𝑐) = (𝑢 𝑣)) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐)))
2912, 28mpd 15 . 2 ((((𝜑𝑢𝑃) ∧ 𝑣𝑃) ∧ 𝑢𝑣) → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐))
30 tgbtwndiff.l . . 3 (𝜑 → 2 ≤ (♯‘𝑃))
311, 2, 3, 4, 30tglowdim1 28526 . 2 (𝜑 → ∃𝑢𝑃𝑣𝑃 𝑢𝑣)
3229, 31r19.29vva 3222 1 (𝜑 → ∃𝑐𝑃 (𝐵 ∈ (𝐴𝐼𝑐) ∧ 𝐵𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  cle 11325  2c2 12348  chash 14379  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-trkgc 28474  df-trkgcb 28476  df-trkg 28479
This theorem is referenced by:  tgifscgr  28534  tgcgrxfr  28544  tgbtwnconn3  28603  legtrid  28617  hlcgrex  28642  hlcgreulem  28643  midexlem  28718  hpgerlem  28791
  Copyright terms: Public domain W3C validator